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Two nice op-amp band-pass filter circuits came up to my knowledge recently

and since I spent a decent amount of time deriving equations for those cir-

cuits it is only fair to write the equations down and share them. Both of

the circuits relate to equaliser applications, although a complete graphic

equaliser is not presented in this context.

1 Adjustable single op-amp band-pass booster

Figure 1 shows a circuit where a bridged-tee filter section is connected in the

op-amp feedback loop. Because the bridged-tee configuration contains two

capacitors, the resulting transfer function will be a second-order (biquad)

filter function. The bridged-tee circuit implements a notch filter on its own,

but when connected in the feedback loop of an active circuit (op-amp or

transistor), the functionality is inverted into a band-pass filter. The band-

pass output is obtained from the op-amp output pin, labelled as 4 in Figure

1.

R1

R2

Cin

C1 C2

VOUT

43

2

1

VIN

Figure 1: Bridged-tee network realises an op-amp biquad filter

When adding a variable resistor beside the resistor R1 in the circuit of Figure

1, the gain and the quality factor Q of the filter can be adjusted. The circuit

can be then used for boosting a specified frequency range and using several

of these filters in series, one has a relatively simple equaliser circuit for some

selected frequencies.

But before analysing the circuit using the variable resistor for gain control,

let’s write the equations for the circuit shown in Figure 1. The nodal-analysis

matrix equation describing the circuit is written as:
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Since ideal op-amps have the property that the voltage of both inputs are

equal, one can simplify the matrix equation. After adding terms of V1 into

V2 and removing the last row of the matrix equation, one is left with an

equation:
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Solving for the node voltage V4, which is the output voltage Vout, yields a

transfer function

Vout

Vin

=
s2C1C2R1R2 + sC1R1 + sC2R2 + sC1R2 + 1

s2C1C2R1R2 + sC2R2 + sC1R2 + 1
(1)

It is easy to notice that the numerator and the denominator are very similar.

The transfer function can be simplified further, but let’s not do that quite

yet. Before that, let’s consider the slightly modified circuit of Figure 2, which

allows to make the gain adjustable by a potentiometer.

The transfer function of this circuit is easily obtained from the simpler model

by noticing that Rx is in series with C1 and there is not any new circuit node

in between these two components. In this case we can evaluate the combined

impedance of Rx and C1 which is:

Z =
1 + sC1Rx

sC1

,
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Figure 2: Gain-controllable band-pass filter

the admittance of this is

Y =
sC1

1 + sC1Rx

,

which can be inserted in equation (1) in place of C1 to yield

Vout

Vin

=
s2C1C2R2(R1 +Rx) + sC2R2 + sC1R2 + sC1(R1 +Rx) + 1

s2C1C2R2(R1 +Rx) + sC2R2 + sC1R2 + sC1Rx + 1
(2)

After simplification this transfer function starts to resemble the gain expres-

sion of the non-inverting op-amp configuration (1 +G):

Vout

Vin

= 1 +

s
R1

C2R2(R1 +Rx)

s2 + s
1

R1 +Rx

[

1

C1

+
1

C2

(

1 +
Rx

R2

)]

+
1

C1C2R2(R1 +Rx)

From the denominator expression one can evaluate the centre-frequency fc

and the quality factor Q, which are

fc =
1

2π
√

C1C2R2 (R1 +Rx)

and

Q =

√

R1 +Rx

R2
√

C2

C1

+

√

C1

C2

(

1 +
Rx

R2

) .
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In addition, if the input signal is fed through the combination of a high-pass

filter of Cin and Rin, the effect of this can be extracted as a separate multiplier,

Factor from input filter:
1

1 +
1

sCinRin

Vout

Vin

→ 2πCinRin > 1.

The condition on the right side states that if the time constant of the input

filter is large enough (larger than 1, for example), the input filter does not

affect the output of the band-pass filter.

Figure 3 shows a quick example on the output of the band-pass filter when

using the potentiometer to control the gain of the filter. The gain scale has

been transformed to show decibels. The component values used are: C1 =

150 nF, C2 = 10 nF, R2 = 22 k, R1 = 47 + aRv k and Rv = (1 − a)50 k.

Here a can have values from [0 : 1] and therefore is used for representing the

turn-percentage of the variable resistor. The idea is that the other portion of

the pot is added into the value of R1. This is because of the analysis method

used.

Figure 3: Quick simulation presentation with different control-pot values
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2 State variable filter based frequency band control

First we will show the basic state variable filter, which is typically found from

literature as drawn in Figure 4. The reader should note that in this version

the input signal is fed into the inverting pin of the operational amplifier.
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7

Figure 4: State variable filter, input on inverting pin, band-pass output

So, without further ado, let’s analyse the circuit using the nodal matrix

method for ideal operational amplifiers. In this method, first the nodal ad-

mittance matrix is written normally and then it is reduced based on the fact

that the input nodes (plus and minus) of an op-amp are virtually in same

potential and that the output current can be left out to be solved later.

The nodal matrix equation for the circuit of Figure 4 is:
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The nonzero elements Yi,j of the admittance matrix are marked with their

corresponding indices indicating the row and column. The listing (3) con-

tains the actual terms that should be substituted to the admittance matrix

above.

Y11 =
1

R1

+
1

R2

+
1

R5

Y13 = Y31 =
1

R2

Y22 =
1

R6

+
1

R7

Y25 = Y52 =
1

R6

Y33 =
1

R2

+
1

R3

Y34 = Y43 =
1

R3

Y44 =
1

R3

+ sC1 Y45 = Y54 = sC1

Y55 =
1

R4

+ sC1 Y56 = Y65 =
1

R4

Y66 =
1

R4

+ sC2 Y67 = Y76 = sC2

Y77 =
1

R5

+ sC2 Y71 = Y17 =
1

R5

(3)

In the case of ideal operational amplifiers, the node voltages V1 and V2 are

at the same potential, and therefore column 2 can be added to column 1 and

column 2 is removed. Also, because V4 and V6 are grounded, the columns

multiplying these voltages can be removed. To reshape the matrix into a

square, all the rows that are aligned with the currents I1, I2 and I3 are re-

moved. With these reductions, the 7x7 matrix is now a 4x4 matrix:
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From this matrix equation, one can solve the transfer functions for every

op-amp output node using the Cramer’s rule. The rule leads to an equation

having determinants in the numerator and in the denominator. Each output

node of this circuit will realise a different filter function.

For this basic state variable filter it is well known that the band-pass output

is obtained from node 5. So, after solving the determinant quotient for node
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5, the band-pass transfer function is

V5

Vin

=
s

1

C1R3

R2

R1

s2 + s
R7(R2R5 +R1R5 +R1R2)

C1R1R3R5(R6 +R7)
+

1

C1C2R3R4

R2

R5

This is standard textbook stuff.

Next we will analyse the same state variable filter, but the input signal is

taken into the non-inverting pin of the op-amp. This configuration is shown

in Figure 5. Surprisingly this configuration is rarely referenced in related

literature, even though in many cases this configuration would be more sim-

pler to adapt to different designs. The following analysis shows why this

configuration is so ’elegant’.

R3

R4
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C2C1

VOUT

R2

R5

VIN

R7

1

2

3 4

5 6

7

Figure 5: State variable filter, input on non-inverting pin, band-pass output

The reduced matrix for the circuit of Figure 5 is the same as for the inverting-

input filter, except that R1 is taken out, and the input current source
Vin

R7

is attached to node 2 instead of node 1. With these changes, the matrix

equation is
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and the band-pass filtered output obtained from node 5 is now

V5

Vin

=

−s
1

C1R3

R6

R5

(

R2 +R5

R6 +R7

)

s2 + s
1

C1R3

R7

R5

(

R2 +R5

R6 +R7

)

+
1

C1C2R3R4

R2

R5

(4)

And hey, this looks much simpler! Also note that in this case the output signal

is inverted from the original input signal. Another important observation for

future purposes.

The general form of the band-pass transfer function is written as

T (s) =
a1s

s2 + s
ω0

Q
+ ω2

0

, (5)

and the centre-frequency gain is then

a1Q

ω0

. (6)

Using this gain information on the band-pass equation (4), we notice that the

gain of this configuration is defined simply by
R6

R7

. It cannot get any simpler

than this!

Now we are ready to check out the complete band-pass control circuit, based

on the state variable filter of Figure 5. Here, by common equaliser theory,

one needs to choose unity gain for the state variable filter, so here R6 = R7.

The added circuit is a standard difference amplifier, where the variable resis-

tor mixes the input and output together, and sends the result of mixing into

the state variable filter. The resistor Rx is there to add gain, if it is left out,

the gain at the pass-band will be ±9 dB. Meaning that this circuit does both

band-pass (boost) and notch (cut) filtering, depending on the setting on the

variable resistor. It is beneficial to analyse the two situations where the pot

is at the left extreme position and at the right extreme position.
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Figure 6: Gain-controllable band-pass using the unity-gain state-variable filter

To prove that the gain for the output signal is defined only by the properties

of the difference amplifier, the difference amplifier is analysed separately.

The state variable filter is taken along only by taking the output impedance

of the filter as one of the resistors in the difference amplifier.

First we will analyse the basic version, without the gain resistor Rx. This

basic difference amplifier is shown in Figure 7.

For the circuit in Figure 7, the nodal equations for the boost mode, where

the input voltage finds its way inverted through the filter to the V+ pin are:

V
−
− Vin

R1

+
V
−
− Vout

R2

= 0

V+ − (−Vin)

Rsvf

+
V+

R4

= 0.
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Rsvf

VOUT

R2

R1

VIN

R4

BOOST CUT< >>><<<

Figure 7: Difference amplifier having the output impedance of the state vari-

able filter as Rsvf . The mixing resistor does not affect the difference calculation.

The inversion of the input signal at V+ should be clear from the equations

above when using the double negation sign. By default we are assuming that

all the currents are approaching the node, therefore the currents are added

together using the +-sign.

To solve the equation pair, we proceed as follows. Because in an ideal op-

amp the + and − pins are in the same potential, one can solve for these two

voltages

V
−
=

VinR2 + VoutR1

R1 +R2

V+ =
−VinR4

Rsvf +R4

≈ −Vin.

The approximation can be made because the output impedance of the state

variable filter is very small compared to R4. The solved input voltages can

now be assigned equal. This will give an equation

− Vin =
VinR2 + VoutR1

R1 +R2

, (7)

which results in a transfer function

Vout

Vin

= −

(

1 + 2
R2

R1

)

, (8)

for the boost mode.
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Nodal equations for the cut mode are:

V
−
− Vin

R1

+
V
−
− Vout

R2

= 0

V+ − (−Vout)

Rsvf

+
V+

R4

= 0.

In the cut mode, the output signal is fed through the state variable filter to

the + pin of the difference amplifier. The state variable filter inverts the

output signal, which is taken into account by placing the extra minus sign in

to the latter equation, where the output voltage is involved.

The solution procedure is the same as already used before. The voltages at

the difference amplifier inputs are solved as

V
−
=

VinR2 + VoutR1

R1 +R2

V+ =
−VoutR4

Rsvf +R4

≈ −Vout.

After combining these equations, we will have an equation

− Vout =
VinR2 + VoutR1

R1 +R2

, (9)

which results in a transfer function

Vout

Vin

= −
1

1 + 2
R1

R2

(10)

for the cut mode.

Hence, if it is chosen that R1 = R2, then the circuit combination of the unity

gain state variable filter and the difference amplifier will give a boost gain of

−3 and a cut gain of −
1

3
. In decibels these gain values are approximately +9

dB and −9 dB respectively.

To summarise the results, the transfer functions for boost and cut are:

BOOST:
Vout

Vin

= −

(

1 + 2
R2

R1

)

; CUT:
Vout

Vin

= −
1

1 + 2
R1

R2

(11)

Figure 8 shows the same difference amplifier, but with added resistor Rx.

Soon we will find out what is the reason for adding the mysterious extra

resistor. The nodal equations for boost and cut in this case are
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Rsvf

VOUT

R2

R1

VIN

Rx

R4

BOOST CUT< >>><<<

Figure 8: Difference amplifier having the output impedance of the state vari-

able filter as Rsvf and with extra Rx for determining the maximum gain

V
−
− Vin

R1

+
V
−
− Vout

R2

+
V
−

Rx

= 0

V+ − (−Vin)

Rsvf

+
V+

R4

= 0,

for boost and

V
−
− Vin

R1

+
V
−
− Vout

R2

+
V
−

Rx

= 0

V+ − (−Vout)

Rsvf

+
V+

R4

= 0,

for cut. These are almost the same as the previous equations, only the ad-

ditional term with Rx is introduced. The reader is encouraged to verify that

the transfer functions resulting from these equations are:

Vout

Vin

= −

(

1 + 2
R2

R1

+
R2

Rx

)

(12)

for boost, and
Vout

Vin

= −
1

1 + 2
R1

R2

+
R1

Rx

(13)

for cut. The obvious conclusion is that if Rx is chosen to be smaller than R1

and/or R2, then the gain is increased from the default 9 dB amplification.

Next for some fancy visualisation of the results. Figure 9 presents the output

frequency response of both boost and cut modes. Both modes are obtained
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from the same circuit only by adjusting the variable resistor either in left

(for boost) or right (for cut) extreme position. The middle position of the

variable resistor should give 0 dB gain for all frequencies, thereby being an

all-pass filter.

<---  CUT

<--- BOOST

Figure 9: Maximum boost and cut output from the state variable filter +

difference amplifier. Intermediate values are obtained by setting the variable

resistor between the two extremes. All-pass filter state should be possible

when pot at mid-position. This image is copied from RANE-article ’Constant-

Q Graphic Equalizers’ by Dennis A. Bohn. Sorry for breaking the copyright

laws only because of being lazy.

Don’t know if this was that much fun after all ... But hopefully useful.
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