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This example shows how to evaluate the small-signal voltage gain and the

output impedance of the inverting and non-inverting operational amplifier

(op-amp) stages. The output impedance will be evaluated using the results

of Thévenin and Norton theorems. According to these theorems, the output

impedance of any circuit stage is obtained as the quotient of open circuit

voltage and short circuit current. The following analysis demonstrates how

to apply both nodal and mesh analysis methods to op-amp circuits.

1 The inverting operational amplifier

Figure 1 shows the inverting op-amp configuration with resistors R1 and R2,

which form an external feedback loop across the op-amp. If the operational

amplifier component is assumed to be ideal (infinite internal gain and infinite

input resistance), the resistors R1 and R2 completely define the small-signal

gain of the inverting configuration. The following derivation indicates the

mathematical gain formulae in the case where the op-amp has a finite inter-

nal gain and input resistance.
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Figure 1: The inverting operational amplifier configuration

Prior to determining the output impedance of the inverting op-amp config-

uration it is necessary to calculate the voltage gain of the amplifier stage.

Since voltages are the object of interest, the nodal analysis method is suit-

able for determining the relationship between the output and input volt-

ages. The nodal analysis requires the signal sources to be represented as

current sources. Due to this, the small-signal equivalent circuit needs to be

redrawn after applying the required source transformations. Figure 2 shows

the small-signal model, from where the voltage gain of the inverting op-amp

configuration can be evaluated with nodal analysis.

After the input voltage source and the voltage-controlled voltage source have
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Figure 2: The small-signal model of the inverting operational amplifier

been converted into current sources with resistor R1 and internal output

resistance ro respectively, the small-signal model is represented by the matrix

equation
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The gain term −

Avi

ro
still needs to be transferred from the current vector to

the admittance matrix. Because vi = V1, the final form of the matrix equation

is
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Solving for the node voltage V2, which is the output voltage Vout, yields a

fractional gain term

Vout = V2 =
Vin (ro − AR2)

R1 (1 + A) + ro +R2 +
roR1

ri
+

R1R2

ri

.

This result is used later together with the expression of the short circuit cur-

rent to solve a formula for the output impedance of the inverting op-amp

configuration.

Another small-signal model is needed to determine the short circuit current

using the mesh analysis. Figure 3 indicates the chosen current loops and

their directions inside the circuit branches.
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Figure 3: The small-signal model of the inverting operational amplifier

The short circuit current is evaluated from the matrix equation
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The voltage vi can be expressed using the mesh currents as vi = I2R2 because

the other end of R2 is shorted to the ground. Therefore, the matrix can be

reshaped to
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The solution of this matrix equation with respect to mesh current I3 is

I3 =
Vin (ro − AR2)

ro (R1 +R2) +R1R2

ro

ri

.

The output impedance of the inverting configuration is therefore

Zout =
V2

I3
=

ro (R1 +R2) +R1R2

ro

ri

R1 (1 + A) + ro +R2 +
roR1
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+
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.
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2 Non-inverting operational amplifier

Figure 4 shows the non-inverting op-amp configuration with resistors R1 and

R2, which form an external feedback loop across the op-amp. If the oper-

ational amplifier component is assumed to be ideal (infinite internal gain

and infinite input resistance), the resistors R1 and R2 completely define the

small-signal gain of the non-inverting configuration. The following deriva-

tion indicates the mathematical gain formulae in the case where the op-amp

has a finite internal gain and input resistance.
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Figure 4: Non-inverting operational amplifier configuration

Prior to determining the output impedance of the non-inverting op-amp con-

figuration it is necessary to calculate the voltage gain of the amplifier stage.

Since voltages are the object of interest, the nodal analysis method is suit-

able for determining the relationship between the output and input voltages.

The nodal analysis requires the signal sources to be represented as current

sources. Due to this, the small-signal equivalent circuit needs to be redrawn

after applying the required source transformations. Figure 2 shows the small-

signal model, from where the voltage gain of the non-inverting op-amp con-

figuration can be evaluated with nodal analysis.
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Figure 5: Small-signal model of the non-inverting operational amplifier
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After the input voltage source and the voltage-controlled voltage source have

been converted to current sources with the internal input resistance ri and

the internal output resistance ro respectively, the small-signal model in Figure

5 is represented by the matrix equation
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To ease out the calculation process, the gain term −

Avi

ro
still needs to be

transferred from the current vector to the admittance matrix. Because the

small-signal input voltage vi = V1 − Vin (verify this from Figure 6), the final

form of the matrix equation is
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Solving for the node voltage V2, which is the output voltage Vout, yields a

fractional gain term

Vout = V2 =
Vin (AR1 + AR2) + VinR1

ro

ri

R1 (1 + A) + ro +R2 +
roR1

ri
+

R1R2

ri

.

This expression for the output voltage is used later together with the expres-

sion of the short circuit current when solving the output impedance of the

non-inverting op-amp configuration.

Another small-signal model is needed to determine the short circuit current

using the mesh analysis. Figure 6 indicates the chosen current loops and

their directions inside the circuit branches.

Based on the small-signal model of Figure 6, the short circuit current is eval-

uated from the matrix equation
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Figure 6: Small-signal model of the non-inverting operational amplifier
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The voltage vi can be expressed using the mesh currents as vi = −I1ri, and

the matrix can be reshaped to
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The solution of this matrix equation with respect to the mesh current I3 is

I3 =
Vin (AR1 + AR2) + VinR1
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.

The output impedance is therefore
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This result for the output impedance of the non-inverting op-amp is exactly

the same as for the inverting operational amplifier configuration.
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