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1 Introduction

Electric circuits are typically modelled using a set of linear equations, which

need to be solved either numerically or symbolically to find out voltages or

currents in specific part of a circuit. For numerical analysis one can use SPICE

simulators or numerical software like Octave, for example.

Circuit equations in symbolic form are typically solved by hand calculations

using pen and paper, either from matrix models or simply using the laws

of electromagnetism directly. Although the matrix model itself is a sym-

bolic equation of the circuit, detailed simplified expressions for some specific

quantities often need to be solved from the matrix equation to examine the

behaviour of a certain node voltage or branch current. Symbolic equations

serve their purpose best when they are short and compact, therefore one

seldom describes complex circuits by symbolic equations.

In some cases it is beneficial to solve symbolic equations even for a bit more

complex circuits, because this can save time in following numerical analysis.

Lenghty pen and paper calculations are prone to errors and take a consider-

able amount of time to simplify to the most compact or clearest form. There-

fore it would be nice if there would exist some tool or a process which could

assist in evaluating the symbolic equations for more complex circuit models.

This document describes how a symbolic computer algebra system (CAS)

can be applied for solving or simplifying circuit matrix equations in symbolic

form. In this context Maxima is used, since it is available for free for everyone

using Linux or Windows operating system.

More background information about Maxima can be found from the offi-

cial project website http://maxima.sourceforge.net/. Nowadays Maxima

is completely an open-source project for which everyone interested can take

part on the development.

2 First example: the common-emitter BJT amplifier

Let’s roll up our sleeves and start with an example of the basic common-

emitter transistor amplifier circuit, for which the small-signal transfer func-

tion will be evaluated symbolically using the Maxima computer algebra sys-

tem. The circuit and its small-signal model are shown in Figures 1 and 2
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Figure 1: A common-emitter BJT amplifier

The base voltage divider consisting of resistors RB1 and RB2 is combined as

a single base resistor RB in the small-signal model. In the small-signal model

the voltage divider resistors appear in parallel, so the basic parallel resistance

formula can be used.
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Figure 2: A small-signal model of the common-emitter BJT amplifier

The matrix equation for the small-signal circuit is given in Equation (1). The

transfer function
VIN

VOUT

will be solved using Cramer’s rule of dividing two

determinants.
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From the matrix equation (1) one can write a Maxima batch file (a normal text

file), which can be run under the Maxima command line interpreter using the

command batch("commonemitter.txt");. The contents of the batch file is

listed below.

stardisp: true$

ratmx: true$

ratfac: false$

matrix([1/RS+1/RB+1/rpi,-1/rpi,0],

[-(BF+1)/rpi,(BF+1)/rpi+1/RE,0],

[BF/rpi,-BF/rpi,1/RC]);

DET_den: determinant(%);

matrix([1/RS+1/RB+1/rpi,-1/rpi,1/RS],

[-(BF+1)/rpi,(BF+1)/rpi+1/RE,0],

[BF/rpi,-BF/rpi,0]);

DET_num: determinant(%);

DET_num/DET_den;

Since the Maxima notation is shown here the first time, some clarifications

need to be given for the functions used in the batch file: The stardisp vari-

able is set to true, to show an asterisk * as a multiplication symbol. The ratmx

true means that matrix operations for polynomials are performed in Canon-

ical Rational Expressions (CRE). The matrix([],[],[]); command defines

the matrix and the determinant() command evaluates the determinant of

the provided matrix expression. The ’%’ mark refers to the result of previous

line. For solving the voltage V3 using Cramer’s rule, two determinants need

to be evaluated and then divided.

The output from running the script is

BF*RB*RC

- -----------------------------------------------------

(rpi + RB + (BF + 1)*RE)*RS + (1 + BF)*RB*RE + rpi*RB

This is the correct result, but it also reveals that the simplification algorithms

in CAS software do not always manage to perform the most optimal solution.

The same expression can be simplified further to the form

−

βFRBRC

(RS +RB)[rπ +RE(1 + βF )] +RSRB

. (2)
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Well, on the other hand it is still nice to have the brain defeat the machine.

3 Case example: BJT amplifier bias and transfer function

As a second example we try to analyse the collector-to-base feedback bias

circuit with emitter resistor included. The complete circuit schematic for the

circuit under analysis is drawn in Figure 3.
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Figure 3: A collector-to-base bias arrangement with voltage divider at the base

and emitter resistor included

Let’s analyse the DC model of the circuit first. The DC model configuration

is drawn to Figure 4, which includes the notations for all the necessary cur-

rents and voltage nodes. Before the node voltage expressions can be solved

with Maxima, the circuit model needs to be written in matrix form. For that

purpose, some pre-analysis is required.

According to the Kirchhoff’s current rule, the current equation for the voltage

node VB is:

I ′ = I + IB = I +
IE

βF + 1
, (3)

and for the voltage node VC:

I ′C = IC + I ′ = IE
β

βF + 1
+ I ′. (4)

After the current equations are written down for each voltage node, the next

step is to express the currents using the supply voltage and the node volt-

ages. The currents appearing in the current equations can be expressed with
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Figure 4: The DC model of the collector-to-base bias circuit

respect to the node voltage as:

I ′C =
VCC − VC

RC

; IE =
VB − VBE

RE

; I ′ =
VC − VB

RB1

; I =
VB

RB2

and after substituting these voltage equations to the current equations,

VCC − VB

RC

=
VB − VBE

RE

β

β + 1
+

VC − VB

RB1

VC − VB

RB1

=
VB

RB2

+
VB − VBE

RE

1

β + 1
.

These two equations can be rearranged into a matrix equation from where

the node voltages can be solved systematically:
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Now that the matrix equation is ready, one can write a Maxima batch file to

solve the unknown node voltages from the matrix. The batch script below

shows an example of how the collector voltage VC is solved from the matrix

equation, again utilizing the Cramer’s rule.

stardisp: true$

ratmx: true$

ratfac: false$

matrix([(BF/(BF+1))*(1/RC) + 1/RB1, (BF/(BF+1))*(1/RE) - 1/RB1],
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[-1/RB1, 1/RB1 + 1/RB2 + (1/(BF+1))*(1/RE)]);

DET_den: determinant(%);

matrix([VCC/RC + (BF/(BF+1))*(VBE/RE), (BF/(BF+1))*(1/RE) - 1/RB1],

[(1/(BF+1))*(VBE/RE), 1/RB1 + 1/RB2 + (1/(BF+1))*(1/RE)]);

DET_num: determinant(%);

DET_num/DET_den;

After running the batch script in Maxima, the result is printed out to the

console as follows:

2

((1+2*BF+BF)*(((1+BF)*RB2+BF*RB1)*RC*VBE+(((BF+1)*RB1+(BF+1)*RB2)*RE+RB1*RB2)*VCC))

2 2 2 2

/((BF+1)*(((BF+BF)*RB1+(BF+BF)*RB2+(BF+2*BF+1)*RC)*RE+(1+2*BF+BF)*RB2*RC+BF*RB1*RB2))

This does not look very elegant. The thing that bothers the most is the poly-

nomial expansions of (βF + 1)2, which cannot be prevented (at least to the

authors knowledge). By taking (βF + 1)2 as a common factor in numerator

and denominator and simplifying manually, the expression becomes

((1 + BF)*RB2 + BF*RB1)*RC*VBE + ((BF + 1)*(RB1 + RB2)*RE + RB1*RB2)*VCC

/((BF*(RB1 + RB2) + (BF+1)*RC)*RE + (BF+1)*RB2*RC + BF/(BF+1)*RB1*RB2)

This is better, but still not the optimal form of solution. Taking the simplifi-

cation one step further, we finally get

VC =
VCC [RE(βF + 1)(RB1 +RB2) +RB1RB2] + VBERC [RB2(βF + 1) + βFRB1]

βF

βF + 1
[RE(βF + 1)(RB1 +RB2) +RB1RB2] +RC(βF + 1)(RE +RB2)

.

(5)

Here we did not get much help from Maxima, but it lead us to the right

direction at least.

Next one can try to tame the AC model of the same circuit. The small-signal

model of the circuit shown in Figure 3 is drawn in Figure 5.
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Figure 5: Small-signal model of the collector-to-base bias circuit

The matrix equation describing this circuit is
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For evaluating the gain transfer function
VIN

VOUT

from this matrix equation us-

ing Cramer’s rule, the following Maxima batch script can be written:

stardisp: true$

ratmx: true$

ratfac: false$

matrix([1/RS+1/RG,-1/RG,0,0],

[-1/RG,1/RG+1/rpi+1/RB1+1/RB2,-1/rpi,-1/RB1],

[0,-(BF+1)/rpi,(BF+1)/rpi+1/RE,0],

[0,BF/rpi-1/RB1,-BF/rpi,1/RB1+1/RC]);

DET_den: determinant(%);

matrix([1/RS+1/RG,-1/RG,0,1/RS],

[-1/RG,1/RG+1/rpi+1/RB1+1/RB2,-1/rpi,0],

[0,-(BF+1)/rpi,(BF+1)/rpi+1/RE,0],

[0,BF/rpi-1/RB1,-BF/rpi,0]);

DET_num: determinant(%);

DET_div: DET_num/DET_den;

num(DET_div);
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collectterms(denom(DET_div),RE);

After running the script, the expression for the numerator is printed as

RB2*RC*((1 + BF)*RE - BF*RB1 + rpi)

and for the denominator the printed expression is

(rpi*RB1 + (RB1 + rpi)*RB2 + ((1 + BF)*RB2 + rpi)*RC

+ ((1 + BF)*RC + (1 + BF)*RB2 + (1 + BF)*RB1)*RE)*(RG + RS)

+ ((BF + 1)*RB1*RB2 + (BF + 1)*RB2*RC)*RE + rpi*RB2*RC + rpi*RB1*RB2

When continuing the simplification process manually, this equation simplifies

to

RB2RC [rπ + (βF + 1)RE − βFRB1]

(RG +RS){(RC +RB2 +RB1)[rπ +RE(βF + 1)] +RB2[RB1 + (βF + 1)RC ]}+ [rπ +RE(βF + 1)](RB1 +RC)RB2

So again Maxima failed to produce the optimal form of the solution, but if the

complete transfer function would have been evaluated from scratch using

pen and paper, it would have taken several hours to complete the task.

4 Filter applications

Transfer functions for passive RLC filter circuits are typically good candidates

to be solved by Maxima, because there the terms can be grouped according to

the powers of Laplace variable s.

For a real life application, we will analyse the transfer function of the clas-

sic Baxandall tone stack, or actually the passive version of it, which is also

known as the James tone stack. The circuit for analysis is shown in Figure

6, with added input and load resistances RS and RL and a signal source VS.

For the analysis, the potentiometers RB and RT are split into two separate

resistors for each RB1, RB2, RT1 and RT2.

Unlike the other examples given in this context, this circuit is analysed using

the current-loop method instead of the more common nodal analysis. The

current loops are marked in Figure 6, and because there is six current loops
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Figure 6: James tone control circuit

identified, the resulting matrix equation will be of size 6x6. The output

current in this case will be the difference I5 − I6.

The circuit matrix equation is too large to be written here so the matrix is

only shown in the Maxima batch file, which is written as follows:

stardisp: true$

ratmx: true$

/* matrix obtained from current loops in the circuit */

matrix([RIN+R1+R2+RB1+RB2,-R1,-RB1,-RB2,-R2,0],

[-R1,R1+R3+RT1+1/(s*CB1)+1/(s*CT1),-1/(s*CB1),0,-R3,0],

[-RB1,-1/(s*CB1),RB1+1/(s*CB1),0,0,0],

[-RB2,0,0,RB2+1/(s*CB2),-1/(s*CB2),0],

[-R2,-R3,0,-1/(s*CB2),RL+R3+R2+1/(s*CB2),-RL],

[0,0,0,0,-RL,RL+RT2+1/(s*CT2)])$

determinant(%)$

DEN_fs: factor(%)$

DEN_den: denom(DEN_fs)$

pld: num(DEN_fs)$

/* extract numerator coefficients in the powers of s to designated variables */

DEN_XRe: coeff(pld,s,4);
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DEN_AIm: coeff(pld,s,3);

DEN_BRe: coeff(pld,s,2);

DEN_CIm: coeff(pld,s,1);

DEN_DRe: coeff(pld,s,0);

/* matrix to solve Iout using Cramer’s rule */

matrix([RIN+R1+R2+RB1+RB2,-R1,-RB1,-RB2,1,0],

[-R1,R1+R3+RT1+1/(s*CB1)+1/(s*CT1),-1/(s*CB1),0,0,0],

[-RB1,-1/(s*CB1),RB1+1/(s*CB1),0,0,0],

[-RB2,0,0,RB2+1/(s*CB2),0,0],

[-R2,-R3,0,-1/(s*CB2),0,-RL],

[0,0,0,0,0,RL+RT2+1/(s*CT2)])$

IIIII: determinant(%)$

matrix([RIN+R1+R2+RB1+RB2,-R1,-RB1,-RB2,-R2,1],

[-R1,R1+R3+RT1+1/(s*CB1)+1/(s*CT1),-1/(s*CB1),0,-R3,0],

[-RB1,-1/(s*CB1),RB1+1/(s*CB1),0,0,0],

[-RB2,0,0,RB2+1/(s*CB2),-1/(s*CB2),0],

[-R2,-R3,0,-1/(s*CB2),RL+R3+R2+1/(s*CB2),0],

[0,0,0,0,-RL,0])$

IIIIII: determinant(%)$

IIIII-IIIIII$

NUM_fs: factor(%)$

NUM_den: denom(NUM_fs)$

pln: expand(num(NUM_fs)*DEN_den/NUM_den)$

/* extract numerator coefficients in the powers of s to designated variables */

NUM_XRe: coeff(pln,s,4);

NUM_AIm: coeff(pln,s,3);

NUM_BRe: coeff(pln,s,2);

NUM_CIm: coeff(pln,s,1);

NUM_DRe: coeff(pln,s,0);

DEN_den;

NUM_den;

DEN_den/NUM_den;

The general format of the James tone control circuit transfer function will be

Ans
4 + Bns

3 + Cns
2 +Dns+ En

Ads4 +Bds3 + Cds2 +Dds+ Ed

, (6)

where the capitalized coefficients will be obtained from the Maxima symbolic

evaluation. The result will be too long to be written here.
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5 Conclusions

All in all, in many cases Maxima will be a good aid when circuit equations

with lots of symbolic variables are to be solved in symbolic form.

The most suitable applications for Maxima appear to be passive filter circuits,

where the coefficients of the Laplace variable s can be listed individually

for each power. From the individual coefficients it is relatively simple to

construct the complete transfer function.

When using Maxima for transistor circuit analysis, is seems to save a lot of

work in the small-signal transfer functions, but often the results are not op-

timally simplified.

The least favourable task for Maxima is the transistor circuit DC analysis,

where almost the same work needs to be done in paper regardless of using

Maxima or not.
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