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This example shows how to evaluate the small-signal voltage gain and the

output impedance of a bipolar junction transistor (BJT) amplifier stage. The

output impedance will be evaluated using the results of Thévenin and Norton

theorems. According to these theorems, the output impedance of any circuit

stage is obtained as the quotient of open circuit voltage and short circuit

current. This approach leads to a convenient example because in broader

sense it demonstrates how to apply both nodal and mesh analysis methods

to BJT circuits.

The analysed circuit contains the BJT device in a common-emitter configura-

tion as shown in Figure 1. The analysis of other BJT amplifier configurations

(common-collector and common-base) follow the same procedure as for the

common-emitter amplifier.
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Figure 1: A BJT amplifier connected in a common-emitter configuration

When considering input signals of small amplitudes, the bipolar junction

transistor is most often modelled as a linear current-controlled current source

(CCCS). However, both the current-controlled voltage source (CCVS) and the

current-controlled current source (CCCS) models are suitable to depict the

BJT device, because the controlled source can be transformed accordingly

using the Thévenin and Norton theorems of circuit analysis. Figure 2 indi-

cates the CCCS and CCVS small-signal models for a general bipolar junction

transistor. These models are applicable only for audio frequencies because

the semiconductor junction capacitances have been neglected to simplify the

following analysis. In a more realistic model, the semiconductor pn junc-

tions behave as small capacitors that affect the high-frequency response of

the BJT device. The linear small-signal gain of the BJT is modelled by the for-

ward current gain factor βF = gmrπ, where the term gm refers to the internal
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transconductance and rπ refers to the internal input resistance of the transis-

tor. Quite often the small series resistance rb is neglected in the analysis so

that the input resistance of a BJT is solely determined by rπ.
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(a) a voltage source model
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(b) a current source model

Figure 2: Controlled source models for a BJT device

The nodal method of analysis is first used for calculating the voltage gain

transfer function of the common-emitter amplifier stage. The rules of the

nodal analysis method require that all alternating (signal) sources in the

circuit are represented as current sources. This requirement can usually

be filled by applying the source transformations defined by the Norton and

Thévenin theorems. Additionally, all the static DC sources are considered to

behave as the ground node from the viewpoint of alternating signals. This is

why all the wires originally connected to DC sources are reconnected to the

ground node in the small-signal equivalent circuit.
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Figure 3: A voltage node model of the common-emitter BJT amplifier
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Figure 3 illustrates the equivalent circuit of the common-emitter amplifier of

Figure 1, which is modified according to the rules of nodal analysis. Com-

pared to the circuit shown in Figure 1, this small-signal model contains an

additional resistor RX . This resistor depicts the internal resistance of the

signal source Vin, which is required to transform the voltage source to a cur-

rent source. The voltage nodes are indexed with numbers 1, 2 and 3. The

node 3 together with the ground node are the output terminals of the cir-

cuit. According to the rules of nodal analysis, the small-signal model of the

common-emitter amplifier is represented by the matrix equation
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This matrix equation can be simplified by noting that the control voltage

vπ can be expressed as the difference of node voltages V1 and V2, namely

vπ = V1 − V2. Based on this observation, the transconductance terms can be

moved from the output current vector to the admittance matrix side. This

little trick will make the symbolic evaluation of the circuit much simpler. It

should be noted that also in matrix equations when terms are moved to the

other side of the equal sign the term changes its sign from positive to negative

or vice versa. After transferring the transconductance terms from the current

vector to the admittance matrix, the final form of the matrix equation is
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The output voltage can be solved systematically using Cramer’s rule. An

application of this rule yields a determinant division
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V3 = Vout =
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which can be evaluated in symbolic form by applying the basic steps of solv-

ing a determinant in the numerator and the denominator. The solution of

the determinant quotient for the node voltage V3, which is the output volt-

age Vout, is the transfer function

Vout

Vin

=
−βFRC

RX + rπ + (βF + 1)RE +
RC(RE + rπ +RX)

ro
+

RE(rπ +RX)

ro

.

As the internal output resistance ro of a BJT is considered very large, the

fractional terms in the denominator are small and can be neglected in ap-

proximate calculations. Hence, a rough estimate of the output voltage is

obtained from equation

V3 =
−VinβFRC

RX + rπ + (βF + 1)RE

.

This result along with the short circuit current expression is later used for

evaluating the formula for the output impedance of the common-emitter

stage.

The analysis of the mesh currents requires its own small-signal equivalent

circuit, which is obtained with slight modifications from the nodal analysis

model. Basically all that is needed to reach the mesh-specific small-signal cir-

cuit is to transform the current sources to voltage sources. In many cases this

approach is more convenient since the nodal analysis often forces to intro-

duce the source resistance RX from nowhere to be able to make the necessary

signal source transforms. Figure 4 illustrates the redrawn common-emitter

circuit suitable for mesh analysis.
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Figure 4: The mesh current model of the common-emitter amplifier

The output short circuit current is evaluated from the matrix equation
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The voltage vπ in this matrix equation can be expressed using the mesh cur-

rents as vπ = I1rπ, and therefore the mesh-matrix is reshaped to
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The use of Cramer’s rule for solving the output short circuit current I3 leads

to a solution

I3 =

Vin

(

−βF +
RE

ro

)

RX + rπ + (βF + 1)RE +
RE(RX + rπ)

ro

.

Finally, the output impedance is evaluated as the quotient of
V3

I3
, which

equals
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When considering the internal output resistance ro to be infinitely large, the

output impedance of the common-emitter BJT amplifier configuration is sim-

ply RC .


