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Prelude

This is a book about travelling. It describes the life journey of a ˇ “( which is set free

by plucking a string of an electric guitar. On its fascinating trip towards feeling

the freedom of the outside world, our little ˇ “( travels through pickups, wires,

cables, effect devices and amplifiers, all the way down to the loudspeaker. During

this trip, ˇ “( faces a lot of difficult situations; it has to push through resistances,

fight between the plates of capacitors and take a ride in the whirls of inductors.

Luckily our little ˇ “( meets a lot of friends along the way. By the help of transistors

and electronic tubes, our little ˇ “( gains a lot of energy and at the end of the signal

chain ˇ “( has grown large enough to set itself free into the surrounding air, feeling

the pressure changes and wind in its stem and eventually disappearing into the

horizon. And no one will ever hear about it again.

This book is a collection of all the knowledge gained over the years of practis-

ing to play bass guitar. Somehow the technical side of things is sometimes more

appealing than the artistic side. After several years of studying in the field of

technology, the author realised that everything learnt on the way can be thought

about the viewpoint of music and especially guitars. This way of thinking has

helped the author to learn many topics in engineering in practise by making a

concrete reference to the technology of music. Therefore, this book is a docu-

mentation of different topics in physics, music and engineering, all connected by

that one bass guitar.

All the topics presented in this book are composed together from already known

facts, which means that very little new information regarding the topics is pro-

duced. The thing that makes this book differ from other similar publications is

the view into the whole chain of scientific elements that guitar players are deal-

ing with when playing their instrument. The primary motivation to document all

this information in the form of a book was to share the knowledge in one pack-

age, instead of having all the bits and pieces scattered around in several books,

articles and the Internet. The ultimate goal in the writing process has been that

the reader of this book could find answers to most of the fundamental questions

which might arise from the technological point of view of electric guitars. The
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book tries to answer questions like: What creates the tones that are heard from

stringed musical instruments? How scientific properties of a guitar string affect

the tone? How can basic components of electronics be used to modify tones?

How different pickup types affect the tone? What is inside a guitar amplifier?

How to achieve an electroacoustic transformation using loudspeakers? How are

guitar effect pedals implemented? How does a guitar tuning device work?

These questions are the ones that have been puzzling the author for a long time.

Others possibly share the same questions, but have not yet managed to find

satisfying answers to them. This book tries to give an answer to these questions,

and tries to form a complete picture of the complex signal chain that is formed

by a guitar and all the accessories related to it. In addition to this, the book melts

together two completely different branches of science. Hopefully, by the help of

this book, a common language between physics and music will be found.

The book is typeset using LATEX. All the pictures have been produced with gnuplot

or MetaPost. Special thanks to John Hobbes for creating MetaPost and also

thanks to Gustavo S. Bustamante Argañaraz for preparing a MetaPost add-on

called MakeCirc, which has been used to draw most of the circuit diagrams for

this book. In addition, MusiXTEX was used to create the musical notations, and

Octave was used as a Matlab replacement for the numerical verification of sym-

bolic results. All the software to support practical projects related to the topics

of this book was written in C language and compiled with the gcc compiler. All

this artillery is running smoothly on the Linux XUbuntu laptop computer, which

gracefully served the author during the whole writing process.

20.10.2012; Oulu, Finland

J.L.
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Disclaimer

This book contains a few complete circuit diagrams, which are suitable to be

built as do-it-yourself projects. While the circuits have been tested to be working

in practise and the circuit diagrams have been drawn with care, there may be

typographical errors in the schematics, which in the worst case could cause the

circuit to malfunction. All the guitar effect devices presented in this book are

intended to be powered by a regular 9 volt battery, which is safe to be used as a

power source in almost any condition. For your own safety, never use any power

source that connects to the mains outlet.

The guitar amplifier circuit diagrams analysed within the scope of this book do

not add up into complete amplifiers because the analysis is presented only from

a theoretical perspective. Guitar amplifiers would obviously require more than a

9 volt battery as a power source, so it is highly advised not to try to build those

as a home-made project unless you are an experienced electrician. When doing

wiring work on the tone and volume control section in the guitar, please make

sure that the guitar cable is not connected to the guitar. Under the bridge of

the guitar there often is a grounding cable, which makes you part of the electric

circuit when touching the strings. In some short circuit conditions this might

lead to lethal accidents. For your own safety, never use any power source that

connects to the mains, and keep the guitar well away from any mains outlet at

all times.

Although the text has been read through several times, certainly mistakes and er-

rors, typographical and even conceptual ones, might be lurking within the para-

graphs. The accuracy of the information presented within this book has not been

inspected by any other person than the author, and therefore the reader is ad-

vised to keep a sceptical attitude towards the contents of this book. The author

is to be accused for all the remaining mistakes and errors in the text.

All trademarks used in this book, registered or otherwise, are the property of

their respective owners. This applies to all manufacturer and product names

used when referring to commercially available amplifiers, effect devices, strings,

cables and other related accessories.
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Chapter

1

Intro

This first chapter covers some basic ideas on the languages of music, physics and

electronics, including the most relevant theoretical background on the topics dis-

cussed in this book. This introductory chapter is intended as a quick reference

section extending the rest of the chapters, although it does not form a complete

and uniform coverage of all topics. In some cases the theoretical treatment is

presented from the viewpoint of the author and should not be taken as the abso-

lutely correct view. It is advisable to read the material with a critical mindset.

1.1 Basic concepts of music

There are several different theories on the science of music. Different locations

of the world have their own view on musical notations, tunings and scales. The

so-called mainstream music is considered to be composed in "the West", meaning

mainly the countries of Europe and America [1, p. 230]. Therefore, the musical

ideologies described in this book follow the theories of Western music. This

is justified from the viewpoint of a guitar player, since the guitar is commonly

considered a Western instrument. By focusing mainly on Western music, one is

restricted to examining only the properties of the twelve-tone equal temperament

scale [1, p. 231], a concept that will be explained later.

Musical masterpieces are documented using a distinct language, a notation, which

only professional musicians understand. By representing a song by writing notes

on a staff, a musician can document every sound and tone to be reproduced with

correct timings and distinct tonal embellishments by other musicians. To fully

understand the topics covered in this book, some terms and symbols from the

musical vocabulary need to be explained.

1



2 INTRO

1.1.1 Interpreting notes

The sound of music is composed from three principal elements. The first of these

elements is pitch, which indicates the relative highness or lowness of a sound.

The second element is duration, i.e. the relative length of a sound, and the third

principal element is loudness, which refers to the intensity or strength of a sound

[2, p. 1]. These three basic elements are mapped into musical notations as

described in Figure 1.1.

I44
E2

ˇ
F2

4ˇ
G2

2ˇ
A2

ˇ
B2

ˇ
C3

6ˇ H4
4

G4

¯ ˘ ˇ (ˇ )ˇ *ˇ

Figure 1.1: Musical notations of pitch and duration

The notes are written into a space limited by five horizontal lines called a staff.

In Figure 1.1 the staff has been divided to left and right sides. On the left side

are the most usual notations that define the pitch of the sound, whereas the right

side gives some examples on the notation related to duration. Let’s explore the

left side first.

The extracted notation starts with a clef symbol. There are a few different kinds

of clef symbols; the one used here is a bass clef, a.k.a. the F clef symbol. It au-

tomatically assigns fixed note names to the five staff lines. Notes are generally

named with capital letters, e.g. A, B, C, E, F and G, although there are national

differences in the note naming conventions. Here we will use namings intro-

duced in American music literature; for example, as seen in reference [2]. The

different octaves of these notes are expressed using subscript numbering, e.g. A1

and A2. This kind of note naming system gives a concrete meaning for the differ-

ent pitches of notes. The bass clef starts from the note named as E2, representing

the sound of the lowest open string of a guitar. Surprisingly, the bass guitar’s low

E-string actually has the note E1. This small conflict is discussed a little later.

The location of a note on a certain staff line is not enough to accurately depict

all possible pitches. In addition there are specific notations for small pitch modi-

fications. The notation of ♭ is used to lower the pitch of a note by a semitone and

the notation of ♯ is used to raise the pitch of a note by a semitone. The notation

of ♮ is used to return the normal pitch to a note which has been modified earlier

using ♭ or ♯. The concept of semitone is explained in section 1.1.2.
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1.1 BASIC CONCEPTS OF MUSIC 3

On the right side of Figure 1.1 is a collection of usual notations of duration. First

there is a treble clef symbol, which is the most common of all clef symbols. This is

followed by a meter signature, which is used to indicate the rhythmic ordering of

notes of different duration in the staff. Then, keeping the pitch constant, notes of

different duration are shown. Starting from the whole note, its duration fills one

full bar when using the most common
4

4
meter signature. The following notes

are derived from the whole note by dividing the duration of the previous note

by a factor of two: half note, quarter note, eighth note, sixteenth note and 32nd

note. [2, pp. 2–11]

In addition to these notations of duration, a general tempo can be set to fix a

certain duration for a specific note such as a quarter note, e.g. ˇ “ = 80. This also

sets the other notes’ durations relative to the tempo setting of the quarter note.

As already mentioned, different clef symbols are used to assign written music to

certain instruments. The most common division done with clefs is to use the bass

clef for low tone instruments and the treble clef for the rest of the instruments.

However, this is not a good method to indicate the actual pitches of notes, since

the pitch variation of different instruments is much larger than can be written

using normal bass and treble clefs. Of course an additional written notification

can be used to indicate a certain instrument, but from a scientific point of view

the pitch is not well defined in these cases. Figure 1.2 tries to explain the actual

pitch ranges that can be written using the most common clef symbols.

ăI
G

E2

(ˇ
C3

(ˇ
C4

-ˇ

C4

(ˇ

A4

(ˇ

G5

-ˇ

Figure 1.2: The boundary between the bass clef and the treble clef

The use of clefs automatically affects the pitches of the notes written on the staff.

Noting from Figure 1.2, the C4 note acts as a median value between the bass and

the treble clefs. Approaching music from a more scientific point of view, one can

ask the question: how are different instruments mapped to the bass clef and the

treble clef? The thickest string of a bass guitar vibrates as E1... How to write

music for the bass guitar since there are not enough staff lines available? The

same question can also be assigned to the guitar, which lowest string vibrates as
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4 INTRO

E2. Should guitar notes be written on the bass clef? Sometimes it is just clear

from the context that notes to be played by bass are written on the normal bass

clef and the instrument name is assigned as bass. But if there is a need to use

exact notations, then one would write music for bass as:

I
8va bassoııııııııııııııııııııııı
E1

ˇ
F1

ˇ
G1

ˇ
A1

ˇ
B1

ˇ
C2

ˇ

D2

ˇ

E2

ˇ

F2

ˇ

Figure 1.3: Scaling the staff to the actual pitch of the instrument

The same procedure should be applied to guitar notes when using the treble

clef. There are similar definitions for raising the actual pitch defined by a certain

clef symbol. These definitions and the proper way of using them are described

thoroughly in reference [2].

1.1.2 A connection to physics

General scientific definition of sound describes sound waves as pressure fluctua-

tions [3, p. 528]. Also from scientific perspective, pitch is related to frequency,

duration is related to time and loudness relates to energy [2, p. 1]. When con-

sidering pitch as a scientific quantity, it is a somewhat naive simplification to say

that pitch equals frequency, since in the musical world pitch is seen through the

sensation of a heard sound [4, pp. 1–11].

Even when playing the same note, different instruments create a different sensa-

tion of sound, which is described to have a certain timbre, tone colour [2, p. 1] or

tone quality [5, p. 18]. Physics explains timbre as a sum of several frequencies,

where the lowest (fundamental) frequency defines the actual pitch for the sound,

but one still cannot equalise the sums of frequencies and the sensation of hearing

a sound. The first treatment ever to combine physics and music was published by

the great German scientist Hermann Helmholtz back in the year 1862 [5]. This

publication also refers to the sensations of tone, as a direct implication from the

title of the book. Therefore, it is not all that simple to give an exact definition for

sound, tones and music purely based on the theories provided by physics.

On the other hand, it is acceptable to say that every written note has a certain

frequency (a.k.a. pitch). These frequencies obey a certain logical construction

that can be used to calculate specific frequencies for all notes in relation to some
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1.1 BASIC CONCEPTS OF MUSIC 5

other note for which the frequency is already known.

The frequencies of harmonic upper partials (often misleadingly called overtones)

of a note are integer multiples of the fundamental frequency [5, p. 22]. This

series of upper partials also covers all octaves of a note because octaves are

2n (n = some positive integer) multiples of the fundamental frequency. In a

typical guitar tuning scheme, the proceeding 12 frets from a certain note cover

the whole octave. Moving one fret upwards or downwards from a note equals

a change of a half tone (semitone) in the pitch. Hence, it is possible to derive

a geometric series equation for the dependencies between different notes: to

double the frequency of a note (taking the octave) one needs to take 12 steps

(semitones). The multiplying factor to change a note by a half tone would then

be
12
√
2 · ˇ “( = # ˇ “( , (1.1)

where ˇ “( means any note and # ˇ “( the same note, but raised by a semitone. This

kind of formula is naturally different for all the different scales; here we are

assuming that the normal twelve-tone equal temperament scale is used.

When mathematically examining musical scales and temperaments, a more ac-

curate unit can be used to measure pitch. This unit is called a cent and it divides

the semitone into smaller parts. This kind of measure was not yet acknowledged

in the times of Helmholtz, but in the English translation a decent definition of a

cent is already introduced [5, p. 431]. A cent divides the interval of equal semi-

tones (1.1) into 100 equal intervals, so therefore it can be used to define pitches

more accurately. The geometrical factor term of a cent is 1200
√
2 and this directly

implies that an octave is measured as 1200 cents [6, p. 45].

When tunings of different instruments are considered, the equal temperament

scale uses the convention that the middle A-note (A4) is fixed to the frequency

of 440 Hz. This is the basis for mapping notes to the frequency plane. The fre-

quencies of all other notes can be calculated from the A4-note using the equation

(1.1). A series of note frequencies is depicted in Figure 1.4.

G
C4

262Hz

(ˇ
D4

294Hz

(ˇ
E4

330Hz

(ˇ
F4

349Hz

(ˇ
G4

392Hz

(ˇ
A4

440Hz

(ˇ
B4

494Hz

-ˇ
C5

523Hz

-ˇ

Figure 1.4: The mappings of notes to the physical frequencies of vibration
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6 INTRO

1.2 Basic concepts of physics

As the musical notations were already explained in the previous section, some

of the most essential mathematical concepts used in physics need to be covered.

The presentation is laid out as what is seen by the author to be essential for

understanding the physical phenomena introduced in this book. In addition this

means that mathematical exactness in this chapter is replaced by practical and

intuitive formalism.

1.2.1 The differential vs. the derivative

The idea behind the differential is to express the exact change ∆f(x) in the value

of a function f(x) between two points, x and x+∆x, i.e.

f(x+∆x)− f(x) = ∆f(x), (1.2)

using a linear approximation. If the actual increment ∆x is relatively small, a

good approximation is obtained by using the slope described by the derivative
df(x)

dx
and the infinitesimal (= very small) increment dx as

∆f(x) ≈ df(x) =
df(x)

dx
dx = f ′(x) dx. (1.3)

To understand this property of the differential, one needs to know the practical

meaning of the derivative. In connection to slopes and linear approximations, the

derivative is based on the mathematical definition of a straight line. For example,

a drawing book of a little child contains exercises that require connecting dots

together by drawing a line through all the points. The equation that defines all

the dots along a straight line is

y(x) = k(x− x0) + y(x0), (1.4)

where k is identified as the slope of the line. This means that if two points,

(x0, y0) and (x1, y1), exist within the path of the line, the change ∆y in the value

of y(x) can be calculated from the equation

∆y = y(x1)− y(x0) = y1 − y0 = k(x1 − x0). (1.5)

This linear dependency connecting the slope of the line with some arbitrary in-

crement x1 − x0 is depicted in Figure 1.5. Related to the derivative where the

increment is assumed to be very small, the linear approximation via differentials

is purely based on the basic equation of a straight line.
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y0

y1

x0 x1

y

x

∆y = y1 − y0

∆x = x1 − x0

y1 = k(x1 − x0) + y0

k =
∆y

∆x

Figure 1.5: Geometry of a straight line

Let’s take a closer look at the geometrical properties and the mathematical def-

inition of the derivative. The derivative of a function f(x) calculated at some

specific point Q0 = f(x0) is geometrically the slope of the tangential line that

touches the function f(x) at f(x0) as depicted in Figure 1.6.

In Figure 1.6 there are also other lines drawn to connect the point Q0 to points

P1, P2 and P3 respectively. This is to clarify the mathematical definition of the

derivative given in equation (1.6); when connecting points of a function f(x)

with a straight line, one approaches a tangent line when the two points become

closer and closer to each other. When the points are overlapping and on the

verge of becoming the one and the same point, the mathematical definition of

the derivative

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

x+∆x− x
= lim

∆x→0

f(x+∆x)− f(x)

∆x
(1.6)

is obtained. Hence, the derivative indeed depicts the slope of a straight line

connecting points x and x + ∆x of a function f(x), but only when ∆x can be

considered to have a value very close to zero.

From the point of view of physics, this purely mathematical definition of the

derivative is not very practical. The more important quantity in physics is the

differential df(x) of the function f(x). Whereas the derivative only refers to a

slope, the differential depicts the actual change of a function or any system in
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x0 x1 x2 x3

Q0

P1

P2
P3

ta
ng

en
t
=
f

′ (x
0
)
· x

+
f
(0
)

f(x)

Figure 1.6: The tangential slope at Q0 vs. lines to points Px of f(x)

some infinitesimal interval. The differential of a function is evaluated as

dy = y(x+ dx)− y(x) =
dy

dx
dx = y′(x) dx. (1.7)

From a mathematical point of view, this definition is not that acceptable, be-

cause the definition of infinitesimal values is not very exact. Basically this is

only a notational issue, but to make differential equations and the definition of

the integral make sense from the practical point of view, one needs to establish

the fundamentals of the differential. Unlike the derivative, the differential has

physical meaning. The differential is the basis for the mathematical modelling of

physical systems. With differential equations one can analyse the behaviour of

some real device without making any measurements on the actual device.

In practise the differential means that when moving an amount of dx from x0 to

x0 + dx, the value of the function f(x) has a new value at f(x0 + dx), which can

be estimated by the rate of change (i.e. slope, i.e. derivative ) at x0 and moving

along this constant change dx times towards x0+dx. The exact change is defined

simply by equation (1.2) and the estimated approximate change is given by the

differential df(x) as depicted in Figure 1.7.

When dividing the equation (1.3) by dx, one obtains the normal derivative to

both sides of the equation
df(x)

dx
= f ′(x). (1.8)
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0
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∆
y
=

y
(x

+
∆
x
)
−
y
(x
)

y(x) = x2

tangent line of y(x0)

Figure 1.7: Depiction of the definition of dy

Concluding from Figure 1.7, if one makes the assignment ∆x = dx then ∆y 6= dy.

The smaller dx is, the closer dy is to the exact change ∆y in y(x). According to

Figure 1.7, it is clear that the differential dy is only a linear approximation of the

amount of change in the actual function y(x) in the interval dx. To extend the

idea of differentials towards more exact approximations, one could try to fit a

polynomial to the original function instead of linear fitting. This idea is known

as the Taylor approximation. The Taylor approximation can be also presented as

a series of derivatives. If the function f(x) has derivatives of all orders, then

f(xp) = f(x0) + f ′(x0)(xp − x0) +
f ′′(x0)

2!
(xp − x0)

2 + · · · =
∞∑

k=0

f (k)(x0)

k!
(xp − x0)

k,

(1.9)

where x0 denotes some constant point on the x-axis, which is chosen as the base

point for the approximation of f(x) at some arbitrary point xp. The practical

use of this approximation concerns cases where the differential can easily be

calculated for point x0, but not at x = xp, which is a point near x0. The closer

x = xp is to x0, the more accurate results follow from Taylor’s formula (1.9).

1.2.2 The differential vs. the integral

Integration and differentiation are opposite mathematical operations. When in-

tegrating some function, one should assume that before integration the function
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is a differential of some function, i.e.

dy

dx
= f ′(x) ⇒ dy = f ′(x) dx = d [f(x)] (1.10)

To build the original function y from the differential dy, one needs to sum all the

infinitesimal differentials together with the integral operator:

∫

dy =

∫

f ′(x) dx =

∫

d [f(x)]

y = f(x)

(1.11)

Notice how the differential operator d and the integral operator
∫

cancel each

other out. This justifies the use of dx in the integral notation as a real quantity of

the differential of f(x), and not just an indicator for the variable to be integrated.

The point is that the infinitesimal dx can be used in the equations like a normal

constant, which can be divided away with another dx. By taking dx as a real

(but very small) physical quantity is the easiest way of understanding differential

equations. The equations (1.11) show the essential link between differentiation

and integration, which is definitely one of the most fundamental mathematical

relations from the view point of practical applications.

Integration is sometimes called "antidifferentiation". The following set of equa-

tions (1.12) should explain the reason for this naming to further show the rela-

tionship between the differential and the integral.

y = f(x)

dy =
df(x)

dx
dx = f ′(x) dx = d





x∫

z=a

f ′(z) dz





y =

x∫

z=a

f ′(z) dz =

/x

z=a

f(z) = f(x)− f(a)

= f(x) + C.

(1.12)

In equation (1.12) a is assumed to be any constant number. Pay careful attention

how to raise the integral operator with the dependent variable x as the upper

limit of the integral. This yields from the fundamental theorem of calculus, which

says that

d

dx

x∫

a

f ′(z)dz =
d

dx

x∫

a

d[f(z)] =
d

dx
f(x)− d

dx
f(a) = f ′(x). (1.13)
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So what else happened in equation (1.12)? By differentiating a function and then

antidifferentiating (cancelling the d operators from both sides), an additional

constant C appeared from nowhere. There are two types of integrals, definite

and indefinite integrals. This was an example of the indefinite integral, since the

limits of integration were not explicitly defined as constant values, but instead

contained the dependent variable x. This indefinite form is practical when solv-

ing differential equations and normally the integral sign in the indefinite form is

written without any limits of integration. The constant of integration C is then

fixed by assigning boundary constraints, which arise from a specific practical ap-

plication. The derivation of the equations of the vibrating string will contain a

practical example of this method.

The physical interpretation of the definite integral relates to area calculations

within graphs. The idea is that areas in graphs are constrained by two or more

variables, and their products lead to physical quantities such as energy, work

and flux. Integrals appearing in practical applications are typically definite in-

tegrals because the integration limits reflect the constraints due to the physical

system under evaluation; the indefinite integrals are used mainly in theoretical

derivations.

1.2.3 Continuous time vs. discrete time

The previous sections have covered basic differentiation and integration methods

with continuous variables. This means that a variable of a function, typically x,

can have any value from the set of real numbers. Usually in practical applica-

tions the form of a function is not known, and all data points are measured at

certain intervals of time. This creates a discrete time function, since if data points

are measured in one second intervals, there is no way of knowing the value at

1.5 seconds, for example. Numerical methods in general have great practical

significance when any data from real world measurements is analysed.

Differentials in discrete time: Numerical mathematical methods define the dif-

ference ∆f(x) between two consecutive data points separated by a constant k

as

∆f(x) = f(x+ k)− f(x). (1.14)

This equation (1.14) is known as the forward difference formula. Naturally there

exists a backward difference formula

∇f(x) = f(x)− f(x− k), (1.15)
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and the central difference equation

∆f(x) +∇f(x) = f(x+ k)− f(x− k). (1.16)

These formulae can be extended as numerical derivatives when bringing in the

slope property of the derivative. The relative change in some variable, call it x,

can be determined via difference formulae.

∆f(x)

∆x
=

f(x+ k)− f(x)

∆x
=

f(x+ k)− f(x)

x+ k − x
=

f(x+ k)− f(x)

k
. (1.17)

When combining the forward and backward difference formulae, a derivative

based on the central difference is obtained.

∆f(x) +∇f(x)

∆x
=

f(x+ k)− f(x) + f(x)− f(x− k)

∆x

=
f(x+ k)− f(x− k)

x+ k − (x− k)

=
f(x+ k)− f(x− k)

2k
.

(1.18)

All of these numerical derivative equations are officially derived from the Taylor

series expansion by taking the first terms of the series, and making the proper

substitutions and subtractions. For example, a substitution of xp = x0 + k into

the equation (1.9) gives f(xp) = f(x0 + k) and the first terms are

f(x0 + k) = f(x0) + f ′(x0)[(x0 + k)− x0] ⇒ f ′(x0) =
f(x0 + k)− f(x0)

k
.

The smaller the constant k is, the more accurate derivative values are obtained

from these numerical derivatives.

Integrals in discrete time: Numerical integration methods are obtained by ap-

proximating the integrand by functions that can be easily integrated. The sim-

plest numerical integration formula is the rectangular rule, where the interval of

integration a ≤ x ≤ b is divided into n subintervals of equal length h = (b−a)/n.

The value of the integrand is sampled at midpoint xj of each subinterval j. Then

the products f(x1)h, . . . , f(xn)h represent the areas of the rectangular boxes de-

picted in Figure 1.8a. The complete definition of the rectangular rule is

J =

b∫

a

f(x) dx ≈ h[f(x1) + f(x2) + f(x3) + · · ·+ f(xn)],

where h = (b− a)/n.
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More accurate numerical approximations for integrals are obtained by using the

trapezoidal rule. In this method the area under integrand f(x) between points a

and b is approximated by n ’trapezoids’, which have areas

1

2
[f(a) + f(x1)]h,

1

2
[f(x1) + f(x2)]h, . . . ,

1

2
[f(xn−1) + f(b)]h,

as shown in Figure 1.8b. When these areas are added together, the definition of

the trapezoidal rule is

J =

b∫

a

f(x) dx ≈ h

[
1

2
f(a) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(b)

]

,

where h = (b− a)/n.

x1 x2 x3 xn

a

b

f(x)

(a) Rectangular rule

a x1 x2 xn−1 b

f(x)

(b) Trapezoidal rule

Figure 1.8: Visualisation of simple numerical integration methods

In both methods of numerical integration the accuracy is increased by making

the step size h smaller.

These simple ideas of numerical differentiation and integration can be extended

further to methods for solving partial differential equations in numerical form.

The basic idea of advancing the evaluation process by a certain fixed step size is

a common procedure in all fields of numerical analysis. As computers become

more and more faster, the accuracy of numerical methods is approaching exact

values as the step size can be reduced closer and closer towards zero.

1.2.4 Fourier analysis vs. an amplitude spectrum

When solving differential equations it often happens that a simple answer does

not exist. Sometimes it is possible to derive an exact answer in the form of an
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infinite series expansion. A sum of all the terms of the series gives an exact an-

swer and partial sums of the series give approximations of different accuracy.

There are several kinds of infinite series, and clearly the most common of them is

called a Fourier series. The Fourier series is one of the most important mathemati-

cal tools for physicists and engineers because its relation to practical applications

is so strong. By using the Fourier series it is possible to reconstruct periodic func-

tions of almost any shape with sums of sinusoidal functions of different frequen-

cies. In the frequency domain, the components of the Fourier series represent

the spectrum of the reconstructed function or series of measurement points. This

spectral representation is especially usable in applications concerning vibrations,

where periodicity is almost always inevitable.

The theoretical background for the analysis was developed by Jean Babtiste

Joseph Fourier in his publication ’The Analytical Theory of Heat’ [7], where the

idea of the series is derived in a clear and detailed manner from first principles.

The result of Fourier’s derivation was a trigonometric series that estimates the

form of periodic signals by sums of sines and cosines, i.e. one can reconstruct

the original signal by summing the components of the trigonometric series

f(x) = a0 +
∞∑

n=1

an cosnx+ bn sinnx. (1.19)

The factors an and bn are commonly known as Fourier coefficients and those can

be physically interpreted as amplitudes of the trigonometric components of the

series. The term a0 is different from other coefficients, and is therefore taken

outside of the general sum. The term a0 depicts the constant offset of the whole

function, and it can be interpreted also as the average value of the function f(x).

The sum (1.19) builds up from sinusoidal functions of integer multiples of index n

in frequency. As an example, Figure 1.9 presents two trigonometric functions and

their sum function. Firstly, the sine function has the amplitude value 1 (1 · sin)

and integer multiplicity n = 1 (1 · x). Secondly, the cosine function has the

amplitude value 2 (2 · cos) and integer multiplicity n = 2 (2 · x). The period T1

of the sine function is 2π; the cosine function has period T2 = π. Because the

cosine function is the second harmonic frequency with index n = 2, it vibrates

two full periods within the same time where sine function does only one full

vibration sequence. The first harmonic frequency is commonly denoted as the

fundamental frequency and the higher harmonic frequencies are upper partials of

the fundamental frequency [5]. The term harmonic components or other similar

expressions are also very often used to denote the upper partials.
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Figure 1.9: Examples of periodic trigonometric functions

The idea of the Fourier series is now decoded into the sum function of the sine

and cosine functions. With these two simple sinusoids, it is possible to generate a

slightly more complex periodic function, which repeats itself in the same period

(T1) as the largest period of the added sinusoids (fundamental frequency). Here

Fourier’s idea is constructed in a reverse engineering kind of way. The process of

reconstructing an arbitrary signal from a sum of sinusoidal signals is commonly

referred to as Fourier synthesis.

Normally there is just an arbitrary periodic waveform f(x), from where the

Fourier series representation is derived. To determine the Fourier series for some

function f(x), the period T of f(x) and coefficients a0, an and bn need to be eval-

uated. If one sets k = 1 in equation (1.19), the period of the fundamental fre-

quency will be simply 2π. In this case, the Fourier coefficients are calculated as

integrals over one full period:

a0 =
1

2π

π∫

−π

f(x) dx ; an =
1

π

π∫

−π

f(x) cos(nx) dx ; bn =
1

π

π∫

−π

f(x) sin(nx) dx.

To scale the basic trigonometric period 2π in equation (1.19) so that it would

be suitable for arbitrary periods 2L, one needs to set x =
2π

2L
x and the period
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2π ⇒ 2L, so that

a0 =
1

2L

L∫

−L

f(x) dx (1.20)

an =
1

L

L∫

−L

f(x) cos
(

n
π

L
x
)

dx (1.21)

bn =
1

L

L∫

−L

f(x) sin
(

n
π

L
x
)

dx. (1.22)

Clearly the calculation process of the Fourier coefficients resembles a correlation

calculation of an arbitrary periodic function f(x) with the trigonometric base

functions sin and cos. If f(x) is an even or odd function, then either the sin

or cos terms will be zero, and these can be handled more efficiently as special

cases using the Fourier Cosine series for even functions and the Fourier Sine series

for odd functions. Equation (1.19) is the one-dimensional form of the series,

but there also exist Fourier series representations for several dimensions. The

process of calculating the series representation is called Fourier analysis and it is

an opposite operation compared to the Fourier synthesis. [8, pp 103–104]

The sine and cosine components of the basic Fourier series (1.19) can be com-

bined to a single sinusoid with a certain amplitude A and phase φ. By setting up

an equation,

an sinnx+ bn cosnx = An sin(nx+ φ)

= An(sinnx cosφ+ cosnx sinφ)

= (An cosφ) sinnx+ (An sinφ) cosnx,

one gets an equation pair,

an = (An cosφ) ⇒ a2n = A2
n cos

2 φ (1.23)

bn = (An sinφ) ⇒ b2n = A2
n sin

2 φ. (1.24)

If the equation pair is summed together, the result

a2n + b2n = A2
n(cos

2 φ+ sin2 φ) ⇒ An =
√

a2n + b2n (1.25)

is obtained, indicating that the common amplitude for a single frequency com-

ponent equals a squared summation over the individual amplitudes of sine and
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cosine. The phase φ can be determined from the equation pair (1.23) by a division

bn
an

=
An sinφ

An cosφ
= tanφ ⇒ φ = arctan

bn
an

. (1.26)

Because of the properties of the tangent function, the phase angle resulting from

equation (1.25) might need to be reduced to the first quadrant. With the results

obtained in equations (1.25) and (1.26), it is possible to represent the total ampli-

tude of each harmonic frequency fn by one single amplitude factor An. This way

of presenting the Fourier series leads to an amplitude spectrum representation of

a signal.

In addition to the Fourier series, the concept of Fourier analysis also extends to

cover Fourier integrals, which in turn lead to integral transforms. The Fourier

integral transform is used to map a function of x to a domain of the complex

frequency iω and leads to a spectrum described by a function of continuous fre-

quency instead of the discrete set of the harmonic frequencies of the Fourier

series. The Fourier integrals do not require the analysed function to be periodic,

but instead the period L needs to cover the whole x-axis, i.e. L = ∞. Because

of their analytical nature, the Fourier integrals are primarily used as integral

transform pairs to solve differential equations and only secondly for spectrum

analysis. The analytic Fourier transform is not very suitable for practical applica-

tions of spectrum analysis. In some very rare cases the Fourier transform might

be used as a special case of the Laplace transform to calculate transfer functions

of electric circuits.

The basic Fourier series (1.19) is only applicable to functions of continuous time,

but spectrum analysis is more often needed for measured signals. A measured

signal consist of sequential samples of the original continuous function, and the

time scale of the sequence of samples is defined by the frequency of taking the

samples. The counterpart of the Fourier series for discrete time functions is the

Discrete Fourier Transform (DFT). Similarly to the basic Fourier series analysis,

the DFT leads to a set of sines and cosines of harmonic frequencies, where the

Fourier coefficients multiplying the trigonometric base functions represent the

amplitude spectrum of the analysed signal.

By definition, the Discrete Fourier Transform coefficient Xk of data series xn is

calculated as

Xk =
N−1∑

n=0

xn · e−i2πk n
N , (k = 0, 1, . . . , N − 1) (1.27)
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where N is the total amount of data points within one period of the sampled

data sequence xn. In a general case, both Xk and xn are complex numbers. The

index k indicates the ordinal number of the frequency component so that k = 0

is the average value and k = 1 is the fundamental frequency. The period T1

of the fundamental frequency is defined by N in connection with the sampling

frequency fS of xn so that

T1 =
N

fS
.

The DFT therefore assumes periodicity of xn as N samples. If the DFT is defined

as in equation (1.27), the physical interpretation of the coefficients Xk is not

directly the amplitude of the frequency component k. The details of coefficients

Xk are derived after some more background information has been covered.

The expression that uses the imaginary exponential is not very practical if one

wants to understand the true nature of the DFT. Based on the Euler identities,

einx = cosnx+ i sinnx

e−inx = cosnx− i sinnx,
(1.28)

the imaginary exponent is depicted as a periodic sum of sines and cosines in the

complex plane, and the magnitude of equations (1.28) is rotating on the unit

circle of the complex plane. This unit circle is illustrated in Figure 1.10.

−i

0

i

−1 0 1

ℜ

ℑ

i
si
n

π 4

cos π
4

Figure 1.10: The unit circle in the complex plane
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With the help of the Euler equations (1.28), the DFT can be written as

Xk =
N−1∑

n=0

xn ·
[

cos
(

2πk
n

N

)

− i sin
(

2πk
n

N

)]

, (1.29)

and (1.29) can be separated into the real and imaginary components of

ℜ(Xk) =
N−1∑

n=0

xn · cos
(

2πk
n

N

)

ℑ(Xk) =
N−1∑

n=0

−i · xn · sin
(

2πk
n

N

)

.

(1.30)

From equation (1.29) one can see that when the index n goes through N sampled

values, the measured values xn are correlated with a complex sinusoidal function

of the fundamental frequency and all the k numbers of its harmonic frequencies.

The range of values of the integer variable k = 0, 1, . . . , N − 1.

The basic idea behind the DFT is therefore to define a correlation factor between

the data series values xn and sinusoidal harmonic frequencies fk, which are in-

teger multiples of the fundamental frequency f1. The fundamental frequency is

determined by the sample size N , which represents the amount of samples in one

full period of xn. The DFT assumes that xn repeates itself in N sample intervals.

The possible phase difference is covered by calculating the complex coefficients

Xk for both the sine and cosine correlation and the result is a squared sum of

these two components. This seems to be equivalent to the process of determin-

ing the coefficients of the Fourier series for continuous functions!

To cover the Fourier synthesis part, it is possible to recover the original time

domain data sequence from a set of Fourier transformed values using the Inverse

Discrete Fourier Transform. The IDFT is defined as:

xk =
1

N

N−1∑

n=0

Xn · ei2πk
n
N , (1.31)

and from here one can notice that the Fourier transformed coefficients Xn in the

inverse transform relate to the amplitudes of the complex form of the continuous

Fourier series (1.19). The complex form of the Fourier series is derived using the

Euler identities (1.28)

einx + e−inx = 2 · cosnx ⇒ cosnx =
1

2

(
einx + e−inx

)
(1.32)

einx − e−inx = 2 · i sinnx ⇒ sinnx =
1

2i

(
einx − e−inx

)
, (1.33)
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and a substitution of these equalities into the trigonometric Fourier series (1.19)

yields

f(x) = a0 +
∞∑

n=1

(
1

2
an ·

[
einx + e−inx

]
− 1

2
ibn ·

[
einx − e−inx

]
)

= a0 +
∞∑

n=1

(
1

2
[an − ibn] · einx +

1

2
[an + ibn] · e−inx

)

=
∞∑

n=−∞

cn · einx.

(1.34)

The last form in equation (1.34) is explained with the notations

cn =
1

2
(an − ibn) (= Xn)

c−n =
1

2
(an + ibn) (= X−n)

c0 = a0 = X0.

(1.35)

This gives a relation to the amplitudes of the complex (cn) and real (an, bn) forms

of the Fourier series. The equality of cn in equation (1.34) and Xn in equation

(1.31) is obvious, and the relation of Xn to the real amplitudes an and bn is the

same as for cn.

The notations cn and c−n in (1.35) mean that in the complex representation of

the Fourier series, the amplitude components of the real-valued Fourier series

have been split into two parts between the positive iω and the negative −iω

frequencies. What are the negative frequencies in the case of Xn then, since the

summation starts from 0 in equations (1.27) and (1.31)?

The theory for the DFT coefficients says that

Xk = X∗
N−k, (1.36)

where k = 0, 1, . . . ,
N

2
− 1 if N is even and k = 0, 1, . . . ,

N − 1

2
if N is odd, and

Xk = XN+k, (1.37)

on the basis of periodicity. A substitution of the periodicity condition k = N + k

from equation (1.37) into the imaginary component in equation (1.30) gives

ℑ(Xk) =
N−1∑

n=0

−i · xn · sin
(

2πn+ 2πk
n

N

)

=
N−1∑

n=0

−i · xn · sin
(

2πk
n

N

)
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because of the rule sin(x + y) = sin x cos y + cos x sin y. This obviously keeps the

reference sine wave rotating to the positive direction. If xn is a sine wave of the

same frequency and phase, the correlation value of the two sine waves is positive

and this will result in a negative imaginary DFT component −iXk. This seems to

match with ak − ibk.

A substitution of the complex conjugate condition k = N − k from (1.36) into the

imaginary component in equation (1.30) gives

ℑ(Xk) =
N−1∑

n=0

−i · xn · sin
(

2πn− 2πk
n

N

)

=
N−1∑

n=0

i · xn · sin
(

2πk
n

N

)

,

and this also keeps the reference sine wave rotating to the positive direction, but

changes the sign in front of the sine function. By the same argument as above,

this will result in a positive imaginary DFT component +iXk that seems to match

with ak + ibk.

This weak argument is trying to prove that

cn = Xn and c−n = XN−n,

where n extends to a range [0, N/2] as already defined more robustly for the even

and odd values of N separately. The amplitudes of the positive frequency com-

ponents are obtained in a growing order corresponding directly to the subindex

until the value of the subindex reaches the limit
N

2
. After this, the DFT spits

out the negative frequencies in reversed order. This is visualised by plotting the

amplitude spectrum from the waveform presented in Figure 1.11. The sampled

waveform, drawn with a solid line in Figure 1.11, is constructed from two sine

waves f(x) and g(x), which are drawn with dashed lines to the same plot. The

analytic expressions for the single sine waves are

f(x) = 2.5 sin(x)− 0.25 and g(x) = 1.25 sin
(

2x− π

4

)

,

and the direct sum of these waves is sampled equidistantly at intervals of
π

4
to

create the input data sequence xn for the DFT calculation.

Using equation (1.27), the data sequence xn with N = 16 sampled data points

is transformed into a set of Fourier coefficients, resulting in 16 complex values

Xk. The previous theoretical discussion suggests that X0 is the average value, or

offset, of the data sequence xn, X1 . . . X7 are the complex amplitudes X+ of the

positive frequencies and X9 . . . X15 are the negative frequency components with

complex conjugate amplitudes X− = X∗
+. The components X9 . . . X15 are more
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Figure 1.11: Sampled sum of two sine waves

intuitively referenced as XN−7 . . . XN−1 to emphasise these as negative frequency

components with an orderly connection to the positive frequency components

X7 . . . X1.

Figure 1.12 illustrates the spectrum representation of these 16 amplitude coef-

ficients Xk. The absolute value of the coefficients has been used to make Xk

real-valued |Xk|, and all the values |Xk| have been divided by N to reach the

amplitude interpretation. In addition, the components have been divided into

groups of positive and negative frequencies around the X0 component to empha-

sise mirroring. As all Xk are plotted as magnitudes |Xk|, the nasty side effect is

that the real sign of X0 is lost. In reality, the DFT had given
X0

N
a value −0.25,

which is exactly the same value what was given to f(x) as offset. Generally Fig-

ure 1.12 shows that with the periodicity of N = 16 samples, a total of six upper

partial coefficients are obtained in addition to the fundamental component X1.

The eighth coefficient is shared between the negative and the positive frequen-

cies, since it is exactly at the boundary point of these frequencies. If the total

number of samples would have been an odd number, then there would not be

any shared components.

The magnitudes of the amplitude coefficients are split in half between the pos-

itive and negative frequency components. In practical analysis, when the input

samples xn are always real-valued, it is common to calculate the DFT for N/2
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Figure 1.12: The DFT coefficients for the sampled sum of sines

components and multiply the magnitudes of the amplitude coefficients by 2. The

negative frequency components have no physical significance in real world ap-

plications and they can be skipped when calculating the DFT. This leads to the

conclusion that if and only if the input data sequence xn is real, then the true

amplitude Ak of a particular frequency component k can be calculated using the

formula

Ak = 2 ·
√

ℜ(Xk)2 + ℑ(Xk)2 =
√

a2k + b2k, (1.38)

where k = 0, 1, . . . , N/2, Xk are the complex coefficients resulting from the DFT

and ak, bk are the amplitudes of the cosine and sine functions in the trigonometric

Fourier series (1.19). This result can also be concluded from equation (1.35). It

should be mentioned that in a general case where the input signal can have

complex values, the amplitudes of the negative frequencies should be summed

with the positive frequencies to obtain the true spectrum of the signal.

The phase information of the frequency components is also included in the com-

plex amplitude coefficients Xk. The general theories of complex numbers define

that the phase

φk = arctan
ℑ(Xk)

ℜ(Xk)
(1.39)

for a certain harmonic frequency of order k.

The relation between the real and imaginary Fourier series states that the DFT
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results in amplitude components which are half in magnitude compared to the

real amplitudes of the trigonometric frequency components. This can also be

analysed from another point of view. Suppose that we have only the fundamental

frequency of a pure sine wave with amplitude A in our system to be measured.

Figure 1.13 depicts one full period of this equidistantly sampled sine wave.
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Figure 1.13: Equidistant sampling of a sine wave

Then the DFT is applied for the fundamental frequency of the signal of Figure

1.13 leading to a derivation sequence:

N−1∑

n=0

A sin
(

2π
n

N

)

sin
(

2π
n

N

)

= A
N−1∑

n=0

[

sin
(

2π
n

N

)]2

=

A
N−1∑

n=0

[
1

2i

(
ei2π

n
N − e−i2π n

N

)
]2

= A
N−1∑

n=0

−1

4

(
ei4π

n
N − 2 + e−i4π n

N

)
=

A
N−1∑

n=0

1

2
− 1

2
cos
(

4π
n

N

)

=
A

2
N −

N−1∑

n=0

A

2
cos
(

4π
n

N

)

=
A

2
N . (1.40)

The result is N times the half value of the real amplitude of the sampled sine

wave. The cosine term in the equation is always zero when the sampling fre-

quency is an exact multiple of the measured sine wave frequency. This way one

can get the original amplitude of the signal by dividing it by N and multiplying
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it with 2. In the more thorough formulation of DFT analysis, this can be thought

of as using a rectangular window function wn with amplitude 1 to multiply the

original signal. A brief discussion about window functions follows later.

In basic DFT analysis, it is extremely important to fill the requirement for the

relation
fS
fn

= kn (1.41)

between the sampling frequency fS and the measured signal frequency f , where

kn is an integer number and the subscript n refers to the upper partial, i.e. n = 1

refers to the fundamental frequency of a periodic signal.

If the requirement for relation (1.41) is not fulfilled, spectral leaking will be added

to the analysis results because of asymmetric sampling or a wrong truncation

point of the measured signal. This phenomenon deserves to be treated with

care, since it is quite typical to have erroneous results because of spectral leaking

in DFT analysis. Figure 1.14 describes a situation where the analysis frame is

deliberately chosen to be larger than the actual period of the sinusoid.
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Figure 1.14: Nonperiodic truncation when sampling a sine wave

When the sampling frequency is not an exact multiple of the analysed signal, the

DFT analysis still gives a good approximation of the amplitude of the fundamen-

tal frequency, but some of the magnitude gets chopped off to the other harmonic

frequencies. This is not that clear at first thought, but below is an attempt to
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prove this effect in a calculation where the sampled sine wave is transformed

with respect to the imaginary sine component of the DFT.

1

N + ǫ

(N+ǫ)−1
∑

n=0

sin
(

2π
n

N

)

· sin
(

2π
n

N + ǫ

)

=

1

N + ǫ

(N+ǫ)−1
∑

n=0

−1

4

(
ei2π

n
N − e−i2π n

N

) (

ei2π
n

N+ǫ − e−i2π n
N+ǫ

)

=

1

N + ǫ

(N+ǫ)−1
∑

n=0

1

2

[

cos

[
2πn

N

(

1− 1

1 + ǫ
N

)]

− cos

[
2πn

N

(

1 +
1

1 + ǫ
N

)]]

(1.42)

When N >> ǫ, this equation reduces to the equivalent of (1.40). In this case the

cosine correlation also gives some contribution to the result, so the calculation

needs to be repeated for the cosine component as well. The calculation is similar

as in equation (1.40), so it is not repeated here. From these calculations one

can derive a formula to estimate the error Ek in the amplitudes of the frequency

components due to the unharmonic truncation point of the analysed data series.

Only the result of a very long calculation is shown here.

Ek =

√
2

N + ǫ

√
√
√
√

(N+ǫ)−1
∑

m=0

(N+ǫ)−1
∑

n=0

cos

(

k · 2πn−m

N + ǫ

)[

cos

(
N

T
· 2πm− n

N

)

− cos

(
N

T
· 2πm+ n

N

)]

This equation results in a relative error term for the fundamental (k = 1) fre-

quency. For other harmonic components of index k this gives a leakage addition

term that is chopped off from the amplitude of the fundamental frequency. When

spectral leakage happens, the amplitude of the fundamental is decreased and the

amplitudes of the following harmonic frequencies are increased. The multiplier

T in the equation refers to the number of periods of the fundamental frequency

taken inside the frame of analysis. The derived equation is just a theoretical

approximation formula for simple sinusoids, but it depicts the idea behind the

possible error coming from the DFT calculations. It should not be used for offi-

cial error estimation of DFT results.

If only simple periodic sinusoidal signals are analysed, it is more than sufficient

to use basic DFT for spectrum reconstruction. Especially in this book there is no

need to go further into Fourier theorems than already presented. There has still

been some personal interest in getting a more advanced level of understanding
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of the DFT, especially knowledge about the Fast Fourier Transform and the effects

of window functions.

Usually Fourier transforms are used to reveal the relative amplitude differences

between the fundamental frequency and the harmonic overtones of periodic sig-

nals. It would still be nice to be able to use the DFT as a measurement instrument,

to reveal the true amplitudes of each harmonic in the analysed signal. This was

proven to be quite simple as a result of calculations made in (1.40) when using

periodic signals and a rectangular window function, which simply scales every

sampled point of the signal with unity.

To go one step further, the following question is: what if one uses some other

window function to weigh the measured sine wave? Let us name the window

function as wn, which has the same N number of data points as our sampled sine

wave does. Then, as calculated in (1.40):

N−1∑

n=0

wnA sin
(

2π
n

N

)

sin
(

2π
n

N

)

= A

N−1∑

n=0

wn

[

sin
(

2π
n

N

)]2

=

A

N−1∑

n=0

wn

[
1

2i

(
ei2π

n
N − e−i2π n

N

)
]2

= A

N−1∑

n=0

−wn
1

4

(
ei4π

n
N − 2 + e−i4π n

N

)
=

A

N−1∑

n=0

wn

2
− wn

2
cos
(

4π
n

N

)

=
N−1∑

n=0

Awn

2
−

N−1∑

n=0

Awn

2
cos
(

4π
n

N

)

. (1.43)

Now there is a situation where it is not possible to state that the cosine term

would always be zero. In fact, in this case it is never zero. From the transform

against the cosine component of the DFT there will be a sine term similar to the

cosine term to make things a bit harder. The leading term is still similar to what

was found in equation (1.40), but now the term N has changed to the sum of the

discrete values of the window function.

The scaling factor to normalise the amplitude of windowed Fourier transforms is

not clear from this context. More accurate analysis needs to be made numerically

with the help of mathematical software. Numerical analysis of the scaling factors

from the most common window functions shows that quite often the effects of the

cosine and sine terms are very small compared to the leading term. It is therefore

common to deduce that the scaling factors of window functions are calculated

by adding up all the terms in the discrete window function. This scaling factor

is more commonly known as a Coherent Scaling Factor, and these factors are
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tabulated for the most common window functions.

Window functions are used to reduce the effect of spectral leaking in situations

where there is no possibility to determine the periodicity of a signal. The most

common window functions are all symmetric and they have a damping effect on

both end points of the analysed signal. Since the DFT assumes continuity at the

end points of the signal (periodicity), by using special windowing the effect of

discontinuity at the end points can be smoothed out a bit. The window functions

aim their full weighting factors at the middle of the analysed signal.

If real-valued input signals are used, then to obtain the real amplitude from a

window-weighted DFT calculation, one needs to divide the magnitude |Xk| with

the sum of the values of the window function and multiply it with 2. Here we

only analysed the simplest possible situation, but it should work somehow for

more complicated systems as well. At least this way one gets a good estimate for

the actual amplitudes of the frequency components of the measured system.

Sometimes there is more interest in the power spectrum instead of the amplitude

spectrum. For the power spectrum one just squares the amplitude, such as |Xk|2,
or multiplies the complex conjugates Xk ·X∗

k . The second method is more analytic

and a more correct way to obtain the power spectrum. The assumption that

power is directly related to the square of the amplitude is not a very robust

definition, at least in the sense of exact values of power.

The Fast Fourier Transform (FFT) is a special case of the DFT. It is a kind of a

short-cut way to calculate the transform, and as its name suggests, it is a much

faster method to calculate the FFT. There are of course restrictions, since the

calculational method of the FFT relies on symmetries. Therefore, the amount of

samples taken to the FFT calculation must be a power of 2 (e.g. 212). This was

the requirement for the traditional FFT, but nowadays there are FFT methods for

other amounts of samples as well.

Zero padding is a quite commonly used method when using the FFT or when ex-

tending the range of the DFT calculation to interpolate the amplitudes of the fre-

quency components that are not integer multiples of the fundamental frequency

determined by the truncation point of the data series. Zero padding is unfortu-

nately commonly misused, because the amount of zeros in the padding should

again be an integer multiple of the fundamental period of the data sequence. If

it is not, spectral leakage or distortion will appear in the analysis results.
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1.2.5 The concept of a decibel vs. an amplitude spectrum

The decibel is a common term when spectrums and frequency response graphs

are concerned. Actually bel [B] is a unit of a physical quantity that measures

logarithmic power ratio with respect to some reference power value. In a math-

ematical formulation bel is defined as

log10

(
P

P0

)

B. (1.44)

In practical applications bel behaves like farads or henrys. It is a quite large unit

and therefore the most commonly used unit is the decibel, which is derived from

bel as follows:

log10

(
P

P0

)

B = log10

(
P

P0

)
1 B

10 dB
10 dB = 10 log10

(
P

P0

)

dB. (1.45)

There are two ways of using the decibel as a measure of the power ratio: the ab-

solute measure and the relative measure. In the absolute measure, the reference

power value is some standard unit of power such as 1 mW, and then the deci-

bels are officially abbreviated as dBm. With similar reasoning the abbreviation

for 1 µW is dBµ. As an example for 4 dBm, the absolute power value P can be

retrieved as

4 dBm = 10 log10

(
P

1 mW

)

dBm

10
4
10 =

P

1 mW

P = 10
4
10 mW.

Please note that the notation of dBm is only a notation! This way the absolute

values are distinguished from the relative values.

In the relative measure the absolute value of the reference power is not known.

This type of measure is commonly used in amplifier specifications, where the

gain of the amplifier is measured as the relative power ratio of the output and

input signals (output in the numerator, input in the denominator). In this case, 0

dB means that the output and input signals have the same power, +3 dB means

that the output power is two times the input power, +6 dB means that the output

power is four times the input power, +9 dB means that the output power is eight

times the input power and −3 dB means that the output power is half of the
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input power. These results can be directly calculated from equation (1.45), e.g.

3 dB = 10 log10

(
Pout

Pin

)

dB

· · · · · · · · · · · · · · ·

Pout = 10
3
10Pin ≈ 2Pin.

The most important thing to understand here is that decibels always depict power

quantities. Every time when one sees a graph using decibels as a measure of

voltage amplitude, it is actually measuring power.

It is anyhow possible to retrieve voltage or pressure amplitudes from decibels via

the relation

P =
V 2

R
,

where V refers to the voltage magnitude and R is resistance. According to the

mathematical laws of logarithms, the exponent is taken down as a multiplier so

that the decibel-formatted voltage relation is written as

10 log10

(
P

P0

)

dB = 10 log10

(
V

V0

)2

dB = 20 log10

(
V

V0

)

dB. (1.46)

Because of the factor of 2 in the voltage conversion, +6 dB means that the output

voltage is two times the input voltage, and so on.

But wait a minute ... Something is not right here ...? The resistances R cancelled

each other out from the voltage equation, meaning that the resistance between

the measurement points of V and V0 should be the same! From this it follows

that if some voltage ratio is first converted to decibels and then this decibel value

is converted to a power ratio, the only case that gives correct powers is when the

resistances of the input and output are the same. From this it follows that a strict

way to define the power ratio from voltages is

P

P0

=
V 2

V 2
0

R0

R
,

and the corresponding conversion to decibels is written as

10 log10

(
P

P0

)

dB = 20 log10

(
V

V0

)

dB + 10 log10

(
R0

R

)

dB.

The rules above are often broken in electronics, where the transfer functions

showing the relative gain are derived directly from the amplitude ratio of the
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input and output voltages, neglecting the impedances. This is possibly just a

common agreement to misuse the decibels when plotting transfer functions, but

it is definitely against the definition of the decibel. Unfortunately this misuse will

be continued in this book as well.

For voltages there also exists an absolute decibel measure, where the reference

voltage is 1 V. The decibels using this reference voltage are officially abbreviated

as dBV. As an example for 4 dBV, the true voltage value Vx can be retrieved as

4 dBV = 20 log10

(
Vx

1 V

)

dBV

10
4
20 =

Vx

1 V

Vx = 10
4
20 V.

Additionally, it is a common habit that when calculating the power level in dBm,

the reference voltage amplitude V0 is set to 0.77459 V and R0 to 600Ω. The terms

V0 and R0 can be chosen freely, as long as they result in a power level of 0.001 W.

[9, pp. 33-37]

The acoustical equivalent of voltage is pressure p, and in the acoustical world

there exists a similar relation,

I =
p2

S
,

where I = intensity and S = area where the pressure p is affecting. Decibels are

commonly used as a measure of intensity as well.

Another unit of measure rarely used instead of the decibel is the neper [Np]. It is

defined as a natural logarithm of a voltage ratio

V

V0

= ex,

and after taking a natural logarithm from both sides,

ln

(
V

V0

)

Np = x ln e Np = x Np.

The relationship between the neper and the decibel is

10 log10

(
P

P0

)

dB = 10 log10 e
2 Np = 8.686

dB

Np
.

This correlation between nepers and decibels is good to know, although this piece

of information is not needed very often.
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1.2.6 The Laplace transform vs. a transfer function

Both the Laplace and Fourier transform belong to a widespread group of integral

transforms. These mathematical transforms have the general form of

u(z) =

∫

C

K(z, t)v(t) dt,

where K(z, t) is called a kernel of a certain transform, and the integral is evalu-

ated around some contour C. [10, p. 433]

Integral transforms are used to map a function of some real variable, like time

t for instance, to another domain of some other variable, which is linked to the

original variable via the transform used. After transforming the domain of a

variable, it is possible to return to use the variable in the original domain via an

inverse transform. Inverse operations in mathematics are typically more complex

than ’direct’ operations. As an example, integration is an inverse operation of

differentiation, since it returns the differentiated function to its original form

before differentiation.

Mathematical analysis of electric circuits leads to a set of differential equations

that are often difficult to solve. The analysis of circuits can be made simpler by

mapping the time dependent variables to a domain where the differential equa-

tions are handled as basic linear equations. This is why the Laplace transform

is frequently used in circuit analysis to solve a group of differential equations

without integration. The idea of the Laplace transform is to change a differential

equation into a polynomial function P (s), where the powers of s relate to the or-

der of the substituted differential. After transformation, mathematical operations

can be made in the s-domain, and when the answer is found in the s-domain, the

expression is transformed back (if necessary) to the time domain via the inverse

transform.

The Laplace transform of a function f(t) is defined as

F (s) = L[f(t)] =
∞∫

0

e−stf(t) dt, (1.47)

where the factor e−st is identified as the kernel K(s, t) of the Laplace transform

[11, p. 221]. The limits of the transform can be extended to cover the inter-

val [−∞,∞], but normally it is unnecessary since the variable of integration is

normally time t and negative time is an obscure concept.

When the integration in equation (1.47) starts from zero, this automatically gives
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the differential equation initial condition(s) at time t = 0. If the initial conditions

need to be given at some other time than t = 0, a simple change of variables

t = t′ + t0 is needed so that t = t0 gives t′ = 0. This follows directly from the

lower limit of the Laplace transform integral (1.47).

Despite presenting the general equation (1.47) from where all the transforms can

be calculated, in practise most of the transforms are done directly from tables

of precalculated transform functions. These tables of Laplace transforms can be

found from any book that covers engineering mathematics because these trans-

forms are so often used in practical applications in all fields of technology. The

most common Laplace transform pairs are listed in appendix E.

The Laplace variable s is a variable of a complex type, where s = σ + jω. In

connection with the exponential function

e−(σ+jω)t = e−σt [cos(ωt)− j sin(ωt)] ,

according to the properties of the complex exponential function. This suggests

that σ refers to the damping coefficient and ω to the angular frequency coefficient

in the basic solution formulae of differential equations.

In the context of differential equations, the Laplace transform is used to establish

a so-called transfer function H(s), which is just a Laplace s-domain equivalent of

the original time domain differential equation. For a linear differential equation

H(s) =
Y (s)

X(s)
,

where Y (s) is the Laplace transform of the output function y(t), and X(s) is

the transform of the input function x(t). Often y(t) is referred to as a response

function and x(t) as a driving function. [12, p. 60]

The Laplace transform is used primarily in two different ways in the design pro-

cess of electrical circuits. The first way is to use the transform with the inverse

transform to find a solution to the differential equation of a circuit in the time

domain. This is called transient analysis, and it shows the real output waveform

y(t) of the circuit with respect to some input function x(t).

Secondly, it is tremendously popular to examine the frequency response of elec-

tric circuits (and also other systems) directly using the Laplace transform func-

tion of the circuit, without the need for an inverse transform. The mathematical

foundations for this method are inaccurately explained in many contexts. This is

why a detailed walkthrough is in order.
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The most common goal in the field of electronics is to find out the output of an

electric circuit when the input signal is a sine wave of the form

x(t) = Ain sin(ωt), (1.48)

where Ain is the amplitude of the sinusoidal input signal and ω refers to the an-

gular frequency 2πf . Assuming that the transfer function H(s) can be expressed

as a ratio of general polynomials,

H(s) =
p(s)

q(s)
=

p(s)

(s+ s1)(s+ s2) · · · (s+ sn)
,

which usually is the case, the Laplace transform of the output function y(t) is

Y (s) = H(s)X(s) =
p(s)

q(s)
X(s) =

p(s)

q(s)

ωAin

s2 + ω2
,

where X(s) is the Laplace transform of the input function x(t) given in equation

(1.48). The transform has been made using the transform pair of function sin(ω)

from the table of Laplace transforms in Appendix E.

Using a partial fraction expansion,

Y (s) =
a

s+ jω
+

a

s− jω
+

b1
s+ s1

+
b2

s+ s2
+ · · ·+ bn

s+ sn
, (1.49)

where a, a and bi are undetermined constants. The complex conjugate pair of

a follows from the input sine wave, and the bi terms appear when the function

q(s) is written open. Using the standard table of Laplace transforms for inverse

transform of equation (1.49), the inverse transform of Y (s) has a general form

y(t) = ae−jωt + aejωt + b1e
−s1t + b2e

−s2t + · · ·+ bne
−snt. (1.50)

If the system is stable, the coefficients −s1,−s2, ...,−s3 have negative real parts,

and the transient terms with these constants will eventually fade away. There-

fore, only the steady state part

y(t) = ae−jωt + aejωt (1.51)

from equation (1.50) remains. This result is still not the complete solution be-

cause the constants a and a are not yet evaluated. Those constants can be deter-

mined from the partial fraction expansion (1.49). To solve for a, according to the

theory of partial fractions as shown in e.g.[13, p. 332], one can multiply Y (s) by

(s+ jω) to cancel the term from the denominator, so that

Y (s)(s+ jω) = H(s)
ωAin

s2 + ω2
(s+ jω) = H(s)

ωAin

s− jω
,
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and evaluate this at the root of (s+ jω), which is s = −jω. This gives

a = −H(−jω)
Ain

2j
.

Similarly for a,

a = H(jω)
Ain

2j
.

Because H(jω) is complex-valued, it can be written in two parts as

H(jω) = |H(jω)| ejφ,

where |H(jω)| is the magnitude and ejφ carries the angle information. The angle

φ is calculated as

φ = ∠H(jω) = arctan

[ℑ{H(jω)}
ℜ{H(jω)}

]

. (1.52)

The same reasoning applies to H(−jω):

H(−jω) = |H(−jω)| e−jφ = |H(jω)| e−jφ

because the magnitude does not change with −jω, it just points in the opposite

direction than in the case of jω. The minus sign on the phase term comes directly

from equation (1.52) defining the angle because arctan(−x) = − arctan(x) is the

negative angle equivalence for the arcus tangent.

Now the constants have been defined, and their values are

a = −Ain

2j
|H(jω)| e−jφ and a =

Ain

2j
|H(jω)| ejφ.

Substitution into equation (1.51) yields an expression for the steady state output

as

y(t) = Ain |H(jω)| e
j(ωt+φ) − e−j(ωt+φ)

2j
= Ain |H(jω)| sin(ωt+ φ) ,

which means that the output signal is also a sine wave with the same frequency

ω as the input signal, but the phase has shifted and the amplitude of the output

sine wave is related to the input amplitude by the equation

Aout = Ain |H(jω)| ⇒ |H(jω)| = Aout

Ain

.

This is an extremely significant result! The amplitude of the output signal is

proportional to the amplitude of the input sine wave with the factor of magnitude

of the transfer function evaluated at some angular frequency ω = 2πf . This way

it is possible to scan through a set of frequencies [flow, fhigh], to see how the

amplitude of the sinusoidal output signal changes as a function of the frequency.
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Due to the derivations provided, for sinusoidal input signals the characteristics

of any system can be directly modelled by a transfer function,

H(jω) =
Y (jω)

X(jω)
,

using the complex angular frequency jω as the argument instead of the general

Laplace variable s. This also leads to definitions of magnitude

|H(jω)| = |Y (jω)|
|X(jω)|

and phase

∠H(jω) = ∠
Y (jω)

X(jω)

having the jω term directly as the argument. All this information is available

already from the transfer function without the need for inverse transform! [12,

pp. 269 – 273]

Apart from the transfer functions of general circuit analysis, Laplace transforms

are used extensively to solve all kinds of differential equations. From the general

definition (1.47), it is possible to derive the formulae (1.53) – (1.55) to transform

integrals and differentials.

L





t∫

0

f(τ) dτ



 =
1

s
L[f(τ)] (1.53)

L
[
df(t)

dt

]

= sL[f(t)]− f(0) (1.54)

L
[
d2f(t)

dt2

]

= s2L[f(t)]− sf(0)− df(0)

dt
. (1.55)

These formulae reveal the use of the Laplace variable s as a replacement of the

differential operator in the Laplace domain, where factor
1

s
represents an integra-

tor and factor s a differentiator. With these transforms it is possible to linearise

a differential equation in the s domain, so that in many cases a complicated dif-

ferential equation is solved with less effort using Laplace transforms. When a

differential equation is transformed to the s domain, it is represented in the form

of a transfer function.

The Laplace transformed transfer function gives direct information about the

stability of the system. The roots of the Laplace variable s in the denominator

of the transfer function are called poles. These roots can be used to indicate if
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the analysed system is stable with respect to a certain input function. The basic

idea of the analysis method is drawn in Figure 1.15, where the green colour on

the left side refers to a stable system and the red colour on the right side to an

unstable system. The marker ’X’ is used to indicate the location of a pole.

e−(σ−iω)t e(σ+iω)t

e−σt eσt

e−iωt

X X

X X

X

ℜ(s)

ℑ(s)

Figure 1.15: The Laplace s domain quadrants of stability

The general rules of stability state that

• If all poles of a transfer function are located on the left side of the imagi-

nary axis in the complex plane of the Laplace variable s, then the system

described by the transfer function is stable.

• If any of the poles is located exactly on the imaginary axis, the system is

undeterministic.

• If any of the poles is located in the right side of the imaginary axis in the

complex plane, the system is unstable.

All of these cases are related to the solutions of a differential equation by the

characteristic equation that determines the argument for the exponential func-

tion

y(t) =
n∑

i=1

Cie
−rit
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acting as the basis of the solution of function y(t). The arguments ri are the

roots of a characteristic equation for the nth order differential equation and by

definition of the s domain transfer function H(s), the roots ri correspond to the

roots si. This is why the different functions depicted in Figure 1.15 are equivalent

to the three different cases of solutions of the nth order differential equation.

The direct substitution of the Laplace variable s with jω in transfer functions

causes confusion in several contexts, because of the similarity of the Laplace

transform with the Fourier integral transform

F (ω) = F [f(x)] =
1√
2π

∞∫

−∞

f(x)e−jωx dx, (1.56)

with kernel K(jω, x). The Fourier integral transform yields a spectral represen-

tation of the original function f(x) in the frequency domain. In practical appli-

cations, Fourier transforms can be equally used with functions of space f(x, y, z)

and functions of time f(t) unlike Laplace transforms, which are mainly applied

in the time domain.

Although the integral definitions of Laplace and Fourier transforms are relatively

similar, and one could be considered as a special case of the other, the Laplace

transform variable substitution s = jω presented here is a special case of the

general complex variable s = σ + jω and it applies only as a ’short-cut’ to the

sinusoidal frequency response modelling as explained above. In general engi-

neering practises, Laplace transforms are used to study the stability of any linear

system by examining the complex roots of the denominator in the transfer func-

tion. The Fourier transform, on the other hand, can be used to find analytic

functions that describe how energy in some system with some arbitrary function

f(x) is divided between different frequencies in the frequency plane. The Fourier

integrals lead to continuous spectrum presentation instead of the discrete point

spectrum given by Fourier’s series. Being analytic functions, the Fourier integrals

do not have that many practical applications where they could be used.

To clear the possible confusion concerning basic engineering applications, there

is no link between the Fourier jω and the Laplace jω whatsoever. Both trans-

forms can be used as purely mathematical tools to make a set of linear equa-

tions from relatively complicated differential equations to simplify the solution

process, which can be considered as the only similarity between these two trans-

forms.
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1.3 Basic concepts of electronics

The current density ~J in a conductor has a dependency to the electric field ~E and

to the properties of the conductive material itself. Especially in metals ~J is nearly

directly proportional to ~E. This phenomenon was first discovered by German

physicist Georg Ohm [3, p. 850]. When properly machined into symmetric ge-

ometrical shapes, conducting and insulating materials can be used to construct

building blocks, which connect together to perform mathematical transforma-

tions to the basic physical concept of current flow.

To lay a steady foundation to basic circuit analysis, it is sufficient to introduce

one single equation

V = IR . (1.57)

This equation is generally known as Ohm’s law, where the symbol V denotes

voltage, I refers to current and R is the resistance. This law is only an idealised

model for certain metallic materials, but it is sufficient and accurate enough for

basic electronics calculations. The following sections give more detailed back-

ground information on the variables V , I and R mentioned in Ohm’s law and

explain other concepts in the field of analogue electronics as well.

1.3.1 Current and voltage

Voltage V carries a unit named volt [V] and the unit for current I is called ampere

[A]. The elementary element of electricity is electric charge q, which constructs

of the basic SI units [A · s]. This combination of units is named as the coulomb,

named after French physicist Charles Augustin de Coulomb. Charge can be either

positive or negative; opposite charges attract each other and similarly polarised

charges repel each other. This result yields from a fundamental physical law

about the interaction of two charges, and this law is also named after Mr. de

Coulomb. Coulomb’s law says that between charges q1 and q2

~F12 =
1

4πǫ0

q1q2
|~r12|2

~r12
|~r12|

, (1.58)

where the convention with the subscripts is that with this notation of ~F12, charge

1 exerts a force on charge 2 along the vector ~r12 joining the two charges. The no-

tation |~r12| refers to the length of the vector ~r12, so that the last term in equation

(1.58) is just a unit vector giving a direction to the force between the charges.

Of course the absolute value of the force does not change if the subscripts are

changed, so it is irrelevant to get stuck with the conventions. The force is acting

between the two charges, and that is all one needs to know. The factor (4πǫ0)
−1
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in front of the equation is only there to compensate for the differences of the unit

systems used. In this book only SI units are relevant, so that the factor is used in

related expressions throughout the text.

Figure 1.16 shows a more general situation where several charges are interacting

with each other and the total force ~F affecting charge q is a superposition (a sum)

of forces exerted by the individual charges q1 and q2.

q

q2

q1 ~F2

~F1

~F =
~F1

+
~F2

~r −
~r 1

~r − ~r2

~r

~r2

~r1

O

Figure 1.16: Forces acting on charge q

In this case the formula to describe the force acting on charge q (with reference

to the notations used in Figure 1.16) is written as

~F =
1

4πǫ0

∑

i

qqi
|~r − ~ri|2

~r − ~ri
|~r − ~ri|

. (1.59)

The vector ~r in equation (1.59) holds the coordinates of charge q, which is under

the influence of force ~F due to charges qi. Basically vector ~r is drawn from the

origin of the chosen coordinate system to the location of charge q. From here

it is simple to define the concept of an electric field ~E, which is defined as the

quotient

~E =
~F

q
=

1

4πǫ0

∑

i

qi
|~r − ~ri|2

~r − ~ri
|~r − ~ri|

. (1.60)

In relation to Figure 1.16, now the charge q is divided away and replaced with

a point P (with a position vector ~r) in space, to which the electric fields ~Ei of

all surrounding charges are affecting. Equation (1.60) holds in the case of simple

point charges, and in a more general case the sum is replaced by an integral and

the point charges by a continuous charge density ρ, according to

~E =
1

4πǫ0

∫

all space

ρ(~rτ )

|~r − ~rτ |2
~r − ~rτ
|~r − ~rτ |

dτ.
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Here ~E is the total electric field at point P , which is connected to the coordinate

origin with the position vector ~r, and vector ~rτ expands from the origin to the in-

finitesimal piece of matter dτ . As a general summary, charged particles generate

an electric field around them, and certain forces exist between charged particles

that give mechanical properties to the basic laws of electrics.

Figure 1.17 shows the electric field lines of charged particles with positive and

negative polarities. The dashed lines depict a constant value of a potential func-

tion φ that exists at a certain distance away from the centre of the charge. The

φ(~r)

~E(~r)+q −q

Figure 1.17: Electric field lines ( ~E) and equipotential lines (φ) of charge q

potential function relates to familiar potential energy U by a relation,

U = qφ, (1.61)

where U has the units of joule just like the mechanical equivalent measure of

energy. The concept of a potential φ and potential energy U in the context of

electric fields is explained by defining the concept of work in electricity. External

physical work is needed to move a charged particle within the influence of an

electric field. As an example, in Figure 1.18 a test charge is moved in the electric

field generated by charge q. If work is done to push the test charge against the

force of the electric field, the test charge gains potential energy. On the other

hand, work done by the electrostatic force on the charge represents a loss of

potential energy of the test charge. Setting ~rA and ~rB as the position vectors of

the points A and B of Figure 1.18, the potential energy difference

qφ(~rB)− qφ(~rA) = −q

B∫

A

~E • d~l. (1.62)

The charge q can be divided out from equation (1.18), and now it is possible to
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A

B

q
r1

r2

~E

d~l

d~r

θ

φ(~rA)

φ(~rB)

Figure 1.18: Moving a test charge in an electric field of charge q

define voltage as the potential difference

V = φ(~rB)− φ(~rA) = −
B∫

A

~E • d~l.

So eventually, the unit of volt is defined as the potential difference φB−φA. From

equation (1.61) it also follows that dividing U by electric charge q yields again

the complicated definition of volt:

V =
U

q
=

U

[A · s]
=

[kg · m2]

[A · s3]
. (1.63)

In other words, when one coulomb of charge is moved through a potential dif-

ference of one volt, one joule of energy is used [14, p. 2].

The electric field has many practically significant properties. When

∮

C

~E • d~l = 0, (1.64)

the electric field is said to be conservative. This an important concept and it

is needed to justify phenomena in the theory of electromagnetic induction. For

example, inside the two conducting plates of Figure 1.19 the electric field is zero,

but between the plates there exists a potential difference caused by the electric

field. This phenomenon is used to create capacitors, which can store energy and

act as a temporary voltage source or a storage of charge.

Electric current is much simpler to define than voltage. Again proceeding from

the elementary charge, current is established as the derivative

I =
dq

dt
,
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φ1σ

φ2−σ

+ + + + + + + + + + + + +

− − − − − − − − − − − − −

~E

| ~E| = 0

d

V = φ1 − φ2 = Ed

d~l

Figure 1.19: The electric field between two conducting plates

meaning that current measures the rate of change of charge in some system.

Alternatively, a flow of electrons might be a more descriptive term to describe

current, and current is often referred to as an analogy to fluid flow.

Electric currents can exist as alternating current (AC), referring to a continuously

changing current value, or direct current (DC), which holds a constant value at

all times. Ohm’s law (1.57) binds the waveforms of current and voltage to be

similar, and somehow justifies the use of notations AC or DC also in the context

of voltages. With a small lack of conceptual rigour, sometimes it is common to

make a reference to alternating voltage as AC, although the C-letter comes from

current.

Before getting deeper in to the subject, let’s introduce some more notations. In

equation (1.57) capital letters are used to write the voltage and current symbols.

Ohm’s law could just as well be written using i to denote current and v to denote

voltage. There is a reason for this and the reasoning is based on the information

provided in Table 1.1.

Table 1.1: Notation preferences for symbols and subscripts

IB DC only capital letter symbol + capital subscript

ib AC only small letter symbol + small subscript

iB AC + DC small letter symbol + capital subscript

Ib AC related capital letter symbol + small subscript

With reference to Table 1.1, it is more common to write currents and voltages

with small letters when it is not directly specified if the value is pure DC or not.

The notation preferences defined in Table 1.1 are used throughout this book, but

based on personal experience, this notation principle is difficult to master.
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1.3.2 Elementary building blocks of electronics

The most basic components of analogue electronics are a resistor (R), a capacitor

(C) and an inductor (L). It is common to think that these basic components are

also the simplest ones. Wrong. It is relatively simple to construct a circuit from a

readily available set of integrated circuits, but creating a design from a mixture of

R, C and L from scratch is definitely not simple. These components have inter-

esting physical properties, which can be accurately modelled with mathematical

equations. The fact that has been blurred by integrated circuits of digital elec-

tronics is that the basic analogue components make use of the natural properties

of materials to interact with electric currents and voltages. In that sense, ana-

logue electronics is a branch of true natural science, whereas digital electronics

in principle is only a simplified application of analogue electronics.

In addition to the notations already explained, there exist several different stan-

dards that define the schematic symbols for components in circuit diagram draw-

ings. Figure 1.20 presents the schematic symbols used for a resistor, a capacitor

and an inductor in this book.

R C L

Figure 1.20: The schematic symbols for a resistor, a capacitor and an inductor

At least the resistor symbol is a bit different from the one that is mostly used

in electronics literature, such as [15]. Different standards have also had several

versions of the inductor symbol, but the one used in Figure 1.20 is the most

common one. Sometimes a black-painted resistor has also been used to depict

an inductor, but this symbol was commonly in use only for a few years at the

beginning of the 21st century and definitely very rarely encountered in general.

A common practise is to designate resistors with the letter R, to which a subscript

can be added to identify a certain resistor in a circuit diagram containing several

resistors. A similar reasoning applies to capacitors identified with the letter C

and inductors with the letter L.

1.3.3 Properties of resistors

The resistor is the simplest of all components, since its behaviour does not de-

pend on frequency. Resistors’ job in circuits is to create voltage differences in
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specified places in a circuit or to set current levels to needed values according

to Ohm’s law (1.57). Resistor is a component that wastes energy from the circuit

with a mechanism where a voltage drop over a resistor dissipates heat as a sign

of lost power. As real components, resistors are also categorised by their ability

to dissipate power. The most common resistor types are defined as 1/4 watts and

the bigger the physical size of the component is, the more it can dissipate power.

The basic equations for resistance follow directly from Ohm’s law. The unit for

resistance is called ohm and it is marked with a capital omega symbol Ω. In

relation to voltage, resistance also constructs from a quite peculiar combination

of basic SI units.

The resistances of commonly available resistors vary from 1Ω to about 100MΩ.

Discrete resistor components are fabricated according to different accuracy/ tol-

erance standards, which also define the basic resistance values of resistors. The

most common series of possible resistance values is the E12 series, which is also

applicable for capacitors. Here the number 12 means that a decade interval of

values has been divided into 12 logarithmic steps, which define the possible com-

ponent values in the series. In this E12 series the tolerance (maximum deviation

from a given value) is 10 %. Other series such as E24, E48, E96 and E192 have

smaller tolerances and offer more standard resistance values to choose from. The

safest choice in circuit design is to use values defined by the E12 series, and any

critical components in a design that depend on a high accuracy component value

should be avoided. Table 1.2 presents the most common E-series values and also

enlightens the idea behind the division among different series of resistor values.

Table 1.2: Selected series of resistance/capacitance values

tol % 10n Ω (n = 0, 1, 2, ..., 8)

E6 20 10 15 22 33 47 68

E12 10 10 12 15 18 22 27 33 39 47 56 68 82

E24 5 10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91

When resistors are connected in series, the total resistance is calculated by a

direct sum of all resistance values. Things are not that simple when resistors are

connected in parallel. In this case, resistance values of individual components

are added reciprocally. Figure 1.21 depicts the combinations of resistors and the

equations to calculate the combined resistance R in the case of series and parallel
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connected resistors.

A
R1 R2

B

A

R = R1 +R2

B

(a) Resistors in series

A

R1

R2
B

A

1

R
=

1

R1
+

1

R2

B

(b) Resistors in parallel

Figure 1.21: Resistors connected in series and in parallel

From the perspective of materials science, every material can be measured to

have some amount of resistivity

ρ =
E

J
.

By placing a slab of material under the influence of an electric field E and mea-

suring the value of current density J , the resistivity of the material is defined. Re-

sistivities of different materials are tabulated in standard tables of physics. Some

resistivity values of selected materials are gathered to Table 1.3. The division

to conductors and insulators is quite clear, but as a reference the semiconductor

substances of germanium and silicon are also added to the end of the table.

Table 1.3: Resistivities ρ [Ω · m] of selected materials at room temperature

conductors insulators

silver 1.5 · 10−8 amber 1014

copper 1.7 · 10−8 glass 1010 − 1014

gold 2.4 · 10−8 lucite > 1013

aluminium 2.8 · 10−8 mica 1011 − 1015

tungsten 5.3 · 10−8 quartz 1016

steel 20 · 10−8 sulfur 1015

lead 22 · 10−8 teflon > 1013

mercury 95 · 10−8 wood 106 − 1011

germanium 0.60 silicon 2300

As resistivity defines only a property of a material, there needs to be a way to
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define a single value of resistance for a resistor. Clearly resistivity and resistance

are related via the dimensions of the component, more accurately expressed as

R =
ρL

A
,

where L refers to the dimension of length and A to the dimension of a cross-

sectional area.

In a laboratory environment where the ambient temperature is practically con-

stant, one can just solve R from equation (1.57) and use that in calculations. In

reality resistors have some dependency on temperature changes. This can be

taken into account in calculations by using equation (1.65), which defines the

temperature dependency of resistance as

R(T ) = R0 [1 + α (T − T0)] . (1.65)

The temperature coefficient α is again material dependent. Table 1.4 shows some

temperature coefficient values for materials of importance.

Table 1.4: Temperature coefficients α of selected materials at room temperature

material α material α

copper 0.00393 silver 0.00380

aluminium 0.00390 tungsten 0.00450

iron 0.00500 lead 0.00430

1.3.4 Properties of capacitors

Along with resistors, capacitors are the most commonly used discrete compo-

nents in electric circuits. A capacitor stores energy into itself, so that it can be

used as a short time power source. With alternating currents a capacitor behaves

like a resistor, which ohmic value depends on frequency. Therefore capacitors

are commonly used to filter some unwanted range of frequencies out from an AC

signal. A capacitor acts like a break in the circuit for DC signals, so that is why

capacitors are used to isolate DC signals from certain parts of the circuit.

Just like resistors have resistance, capacitors have capacitance. The official defi-

nition states that

C =
q

V
, (1.66)
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meaning that capacitance C holds some amount of charge q within potential

difference (voltage) V . [3, p. 816]

Capacitance is closely connected to electric fields and dielectrics. Figure 1.19

from section 1.3.1 is a textbook example of a plate capacitor, where the capaci-

tance is calculated as

C =
q

V
=

ǫ0A

d
,

because the uniform charge density inside the plate is

σ =
q

A
= ǫ0E = ǫ0

V

d
,

as was defined in section 1.3.1. The connection to dielectrics (induced charges

in insulating material) arises when the space between the plates of the capacitor

is filled with insulating material. In that case the capacitance of the parallel plate

capacitor

C = ǫC0 =
ǫǫ0A

d
,

where ǫ is the relative permittivity of the dielectric (insulating material). Di-

electric substances can be used to increase the capacitance value of capacitors

without increasing the physical size of the components. Adding a dielectric into

a capacitor reduces the potential difference across the capacitor. Figure 1.22

explains the effect of an added dielectric between the parallel plate capacitor.
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(a) A parallel plate capacitor with a vac-

uum dielectric
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−σi σi

(b) A parallel plate capacitor with an

insulating dielectric

Figure 1.22: The effect of an insulating dielectric between capacitor plates
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Values of relative permittivity for some selected materials are collected in Table

1.5.

Table 1.5: Values of relative permittivity ǫ of selected materials

material ǫ material ǫ

vacuum 1.0 air 1

mylar 3.1 mica 6

neoprene 6.7 glass 7

polyethylene 2.3 germanium 16

The definition of capacitance (1.66) does not give any meaningful information

with direct currents. Writing equation (1.66) as

q = Cv,

and differentiating both sides with respect to time,

d

dt
q(t)dt = C

d

dt
v(t)dt,

reveals the equation

i(t) = C
d

dt
v(t) (1.67)

relating current and voltage of a capacitor. If the charge of the capacitor stays

constant, then the derivative dq(t)/dt is zero, and no current is flowing anywhere.

For this reason a capacitor is kind of a blocking issue when operated with DC

voltages (although the initial charging of the capacitor happens also with DC

voltage).

For sinusoidal input voltage, equation (1.67) says

i = C
d

dt
V0 sin(ωt) = ωCV0 cos(ωt) = ωCV0 sin

(

ωt+
π

2

)

,

which means that the phase of the current in a capacitor is leading the input

voltage by 90 degrees. If this current-voltage relation is transferred to the com-

plex plane where the angle difference between the real and imaginary axes is 90

degrees,

i = jωCV0 ⇒ i =
V0

1

jωC

.
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This expression has the same form as Ohm’s law, the frequency dependent impedance

of the capacitor being
1

jωC
.

The same complex impedance expression is obtained using the Laplace trans-

form. An application of the transform rule (1.54) for the derivative in equation

(1.67) gives

L[i(t)] = CsL[v(t)] ⇒ L[v(t)]
L[i(t)] =

1

sC
. (1.68)

When the input signal is a sine wave, the Laplace variable s = jω as explained in

section 1.2.6, and the capacitor impedance expression is in agreement with the

earlier result. The reactance of a capacitor is XC =
1

ωC
, and it is simply derived

from the complex impedance expression by taking out the imaginary factor j.

[14, pp. 25 – 27]

Capacitors have similar properties as resistors when connected in series or in par-

allel. As Figure 1.23 indicates, the rules of capacitance addition are the opposite

to the rules of resistance addition. When capacitors are connected in parallel,

the combined capacitance is calculated as a direct sum of individual capacitance

values, whereas series-connected capacitances are summed reciprocally.

A
C1 C2

B

A

1

C
=

1

C1
+

1

C2

B

(a) Capacitors in series

A

C1

C2

B

A

C = C1 + C2

B

(b) Capacitors in parallel

Figure 1.23: Capacitors connected in series and in parallel

The practical capacitor components that can be bought from a local electronics

store have a variety of different types to choose from. Table 1.6 lists a few com-

mon types of capacitors and their properties. The table is adapted directly from

reference [14, p. 19]. The most common capacitor types sold by component

dealers are ceramic, mylar (polyester) and electrolytic capacitors. The quality

difference between ceramic and mylar capacitors is subtle, although some might

favour mylar capacitors over ceramic ones in audio applications. Electrolytic ca-

pacitors are commonly used to give large capacitance values with a single com-
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ponent. Unfortunately electrolytic capacitors are the most problematic because

of poor quality and relatively short life span.

Table 1.6: Capacitor types and their properties

type value range accuracy leakage description

mica 1 pF – 10 nF good good
excellent quality, good for RF
applications

ceramic 10 pF – 1 µF - -
small, inexpensive, very popular,
poor temperature stability

mylar 1 pF – 10 µF good good
inexpensive, good, very popular,
poor temperature stability, also
known as polyester capacitors

polystyrene 10 pF – 10 nF good very good
high quality, large in size,
suitable for signal filters

polycarbonate 100 pF – 10 µF good good
high quality, suitable for
integrators, good temperature
stability

tantalum 0.1 µF – 500 µF poor medium

popular, small, polarised, poor
temperature stability,
recommended to replace
electrolytic caps

electrolytic 0.1 µF – 0.2 F terrible awful
recommended only for power
supply filters, polarised, awful
temperature stability

1.3.5 Properties of inductors

Inductors inherit their properties from the theory of electromagnetic induction,

which consists of many different laws and internal relations between those laws.

A practical inductor component is just a piece of wire that is bent into a loop

or a helical structure. Usually inductors consist of several turns of wire stacked

side by side or even in many layers on top of each other. As a commonly used

special case, an inductor consisting of several sequential loops of wire is called

a solenoid. The solenoid therefore looks like a tube made of wire as shown in

Figure 1.24.

~B

~A
ΦB = ~B • ~A

ε = −N
dΦB

dt

Figure 1.24: Solenoid made of N loops of conducting wire

Just like resistors have resistance and capacitors have capacitance ... inductors
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have inductance. For a single inductor the definition of inductance arises from

the ability of a wire loop (or any piece of wire in general) to generate a mag-

netic field when current is applied to the wire. Mathematically the definition of

inductance derives from the flux of a magnetic field Φ, the relation being

L =
NΦB

i
, (1.69)

where N is the number of loops in the inductor and i is the current flowing in

the wire. Inductance is officially called self-inductance because the inductance

properties of any electrical component appear internally when a flowing current

generates a related magnetic flux around the component.

Multiplying equation (1.69) by current i and differentiating with respect to time,

L
di

dt
= N

dΦB

dt
,

and furthermore there exists a relation to electromotive force,

ε = −L
di

dt
. (1.70)

This e.m.f. is generally named as self-induced e.m.f., since the voltage ε over the

inductor arises internally due to excitation with alternating current. Because of

the differentials in equation (1.70), only alternating currents are able to generate

the e.m.f.; static direct current only initiates a constant magnetic field. The mi-

nus sign in equation (1.70) indicates that the polarity of the self-induced e.m.f.

opposes the changes in the flowing current.

The deeper theoretical background of inductors is based on two types of electric

fields, electrostatic fields ~Ec and nonelectrostatic fields ~En. Earlier when treating

electric fields in the context of voltage in section 1.3.1, it was stated that a line

integral over a closed path enclosing an electric field equals zero. This always

holds, but only when the field is an electrostatic field ~Ec. The nonelectrostatic

field ~En refers especially to situations where the electromotive force ε is a result

of electromagnetic induction. In this case the line integral of equation (1.64)

should be written ∮

C

~En • d~l = ε = −dΦB

dt
, (1.71)

meaning that the total work done by the field ~En equals the induced electromo-

tive force.

Additionally, Gauss’s law for an electric field states that a surface integral of ~E

over a closed surface with a differential surface normal vector d ~A
∮

C

~Ec • d ~A =
Q

ǫ0
,
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where Q is the total charge enclosed within the surface. Note that the electro-

static field ~Ec is used here. For a nonelectrostatic field,

∮

C

~En • d ~A = 0.

The electrostatic field ~Ec and the nonelectrostatic field ~En sum up linearly to a

total field

~E = ~Ec + ~En.

Especially when connecting inductors as part of a closed circuit, the total field

~Ec + ~En within the inductor must be zero to keep the total field conservative.

When combining equations (1.70) and (1.71)

∮

C

~En • d~l = −L
di

dt
, (1.72)

and in the case of a closed electric circuit, the line integral of equation (1.72) is

calculated around the whole circuit. But because the ~En field is nonzero only

inside the inductor, equation (1.72) can be written as

b∫

a

~En • d~l = −L
di

dt
, (1.73)

where points a and b are the connecting terminals of the inductor. In this case

it is clear that the electrostatic field has value ~Ec = − ~En to make the total field

zero. This leads to the equation

b∫

a

~Ec • d~l = L
di

dt
,

from where follows an expression for the voltage over the inductor terminals,

Vab = Va − Vb = L
di

dt
. (1.74)

[3, pp. 1151 – 1153]

The inductance equations presented so far concern only air core inductors. Sim-

ilarly as capacitance can be increased by adding insulating materials between

plates, inductance can be increased by adding magnetically sensitive material

inside a solenoid structure. The magnetic field generated by the solenoid also

magnetises the core material, which increases the total magnetic flux inside the

solenoid. According to equation (1.69), this also increases the inductance of the
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inductor. The magnetic equivalent quantity of dielectric relative permittivity ǫ is

magnetic permeability µ.

When evaluating expressions for the magnetic field density ~B for air core induc-

tors, Ampère’s law and the Biot-Savart law automatically add the permeability of

free space µ0 to the equations. The relative permeability is used as a multiplier

in the form µµ0 to scale the value of free space permeability. Useful core mate-

rials to increase the inductance of a solenoid are materials with ferromagnetic

and diamagnetic tendencies. As a side effect, magnetic core materials introduce

nonlinearities to an inductor so that the dependency between the generated mag-

netic flux and the applied current is not linear anymore.

With alternating currents, inductors have similar resistive properties as capaci-

tors have. The basic inductor equation (1.74) in the case of alternating signals is

written as

v(t) = L
d

dt
i(t) (1.75)

relating the voltage and current of an inductor. For sinusoidal input current,

equation (1.75) says

v = L
d

dt
I0 sin(ωt) = ωLI0 cos(ωt) = ωLI0 sin

(

ωt+
π

2

)

,

which is the same as in the case of capacitance, but now the roles of voltage and

current have changed places.

If this current/voltage relation is transferred to the complex plane where the

angle difference between the real and imaginary axes is 90 degrees,

v = jωLI0.

This expression has the same form as Ohm’s law, the frequency dependent impedance

of an inductor being jωL. The same complex impedance expression can be ob-

tained with Laplace transforms. When applying the derivative transform rule

(1.54) to equation (1.75),

L[v(t)] = LsL[i(t)] ⇒ L[v(t)]
L[i(t)] = sL. (1.76)

When the input signal is a sine wave, the Laplace variable s = jω as explained

in section 1.2.6, and the inductor impedance expression is in agreement with the

earlier result. The reactance of an inductor is XL = ωL, and it is simply derived

from the complex impedance expression by taking out the imaginary factor j.
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When connected in series or in parallel, inductance values are added with the

same rules as pure resistances. The addition rules for inductances are sum-

marised in Figure 1.25. One word of warning concerning practical circuit de-

A
L1 L2

B

A

L = L1 + L2

B

(a) Inductors in series

A

L1

L2
B

A

1

L
=

1

L1
+

1

L2

B

(b) Inductors in parallel

Figure 1.25: Inductors connected in series and parallel

sign: closely connected inductors also generate mutual inductance, which alters

the value of both inductors. Usually the effect of mutual inductance is unwanted,

so just keep in mind to keep inductors separated when building circuits.

Inductors as real world components are the most difficult ones to acquire. Some

standard high-frequency inductors are sold directly from the shelf, but if some

special inductance values are desired, it is better to wind the inductor as a do-

it-yourself project because combinations of several discrete closely connected in-

ductors easily result in the mutual inductance effect. If a large inductor is wound

from a wire several meters long, then the pure resistance RL of the wire has to

be taken into account in calculations.

1.3.6 Circuit analysis methods

Circuit analysis refers to a process of solving unknown currents and voltages

in circuit networks. From the designing perspective, different circuit analysis

methods enable the modelling of the designed circuits mathematically, without

the need for excessive prototype builds. The most basic circuit analysis tech-

niques rely on the so-called Kirchhoff ’s laws: Kirchhoff’s Voltage Law (KVL) and

Kirchhoff’s Current Law (KCL). More advanced methods include mesh analysis

and nodal analysis, both of which are systematic matrix methods built on top of

Kirchhoff’s laws. The simple circuit in Figure 1.26 is used as a basis for explain-

ing how to use Kirchhoff’s laws in practise. In Figure 1.26 the black dots are

called nodes, the elements between the nodes are called branches and the closed

path formed by the branches is called a mesh or just simply a loop.
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1
R1

V1

2

4

R2

3
R3

V3IA IB

IR1 IR3

IR2

Figure 1.26: An example circuit to explain Kirchhoff’s laws

Kirchhoff’s Current Law: The sum of all currents leaving a specific node is equal to

the sum of currents entering that node. By a general agreement, currents leaving a

node are marked as positive and currents entering a node are marked as negative.

On a deeper level KCL is based on the law of conservation of charge. Systematic

use of KCL also leads to nodal analysis, because from Figure 1.26:

IR1 =
V24 − V14

R1

IR2 =
V24

R2

IR3 =
V24 − V34

R3

.

Since the actual values of the voltage sources are unknown in this case, it is

common practise to make the initial assumption that all the currents are leaving

the specific node for which the equations are written (V24 in this case). Then as

a consequence of KCL, the sum of these leaving currents must equal zero, i.e.

V24 − V14

R1

+
V24

R2

+
V24 − V34

R3

= 0.

The actual resulting node voltage values for all the unknown voltages will correct

the direction of the currents automatically, as long as the equations are written

with consistency for the chosen signs for leaving and entering currents. By gath-

ering terms with respect to nodal voltages,

−V14
1

R1

+ V24

(
1

R1

+
1

R2

+
1

R3

)

− V34
1

R3

= 0.

This equation can be written in matrix form,

[

− 1

R1

(
1

R1

+
1

R2

+
1

R3

)

− 1

R3

]

×







V14

V24

V34






=
[

0
]

.

Unfortunately this is not that good example of nodal analysis because there is

only one node in this simple circuit, and that one node creates that one row

to the admittance matrix. Normally the circuit is written directly into a matrix

equation, and the unknown node voltages are solved using Cramer’s rule, leading
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to a determinant division. There will be a lot of practical examples of nodal

analysis throughout the text. To give short step-by-step instructions at this phase,

the rules for nodal analysis are:

1. Convert all voltage sources to current sources and redraw the circuit using

these current sources

2. Select the reference node (usually the ground node) and indicate all other

nodes with numbers 1, 2, 3, ..., N

3. From KCL it follows that the matrix representation will have the general

form of 













Y11 −Y12 · · · −Y1N

−Y21 Y22 · · · −Y2N

...
...

. . .
...

−YN1 −YN2 · · · YNN















×















V1

V2

...

VN















=















I1

I2

...

IN















where

• Yii = sum of all admittances connected to node i

• Yij = sum of all admittances connected between nodes i and j

• Ii = sum of all current sources entering node i, leaving current sources

are prefixed with a minus sign

4. From the matrix representation, all needed node voltages can be solved

using Cramer’s rule

When denoting matrix rows with index i and columns with index j, it follows

that the admittance matrix has all entries Yij prefixed with a minus sign except

when i = j. This comes from the initial assumption that all currents are leaving

from the specific node i. Ii is the sum of converted current source terms entering

or leaving node i. Leaving current source terms have a minus sign and entering

current sources have a plus sign. This is exactly the opposite of the common

agreement stated earlier, but here the terms are only moved to the other side of

the equality sign, so that is why the signs are opposite.

In the case of controlled current sources (such as gmvπ in a transistor equivalent

circuit), those should be written in terms of node voltage variables (V1, V2...) at
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the admittance matrix side before solving the matrix equation. There will be lots

of examples of this method presented in the following chapters.

Kirchhoff’s Voltage Law: The sum of all voltage drops around a closed loop is

zero at all times. In practise one just goes around a closed path in a circuit

(either clockwise or counterclockwise) and sums up all voltages on the way. To

be more specific about the voltage drops, there are two rules:

1. a positive voltage drop is in the direction of the current in a resistor (or

more generally impedance)

2. a battery has a positive drop in the direction from the + terminal to the −
terminal, independent of the direction of the current

With these rules in mind it is possible to solve the branch currents IR1, IR2 and IR3

in Figure 1.26. Going around the loop specified as IA in the clockwise direction

yields,

−V14 − IR1R1 + IR2R2 = 0,

and the second loop in the clockwise direction equates to

−IR2R2 + V34 + IR3R3 = 0.

These two equations form a pair of equations with three unknowns. A third

equation is needed to solve these equations. That third equation comes from

KCL:

IR1 + IR2 + IR3 = 0.

From the set of these three equations it is possible to solve the unknown branch

currents IR1, IR2 and IR3. The initial directions of the currents are just thrown

in based on a guess. The final result indicates whether the guess had been a

successful one.

The KVL method leads to a systematic mesh analysis where mesh currents are

solved and the individual branch currents are obtained as sums or differences of

the mesh currents. The good thing is that there is no need to make initial guesses

on the directions of the branch currents anymore. The following matrix equation

can be written from the circuit in Figure 1.26:






R1 +R2 −R2

−R2 R2 +R3




×






IA

IB




 =






V14

−V34




 .
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For basic use of the mesh analysis, the following list gives short step-by-step

instructions to create the mesh matrix:

1. Convert all current sources to voltage sources and redraw the circuit using

these voltage sources

2. Select a mesh current variable for each loop, e.g. I1, I2, I3, ..., IN

3. From KVL it follows that the matrix representation will have the general

form of














Z11 −Z12 · · · −Z1N

−Z21 Z22 · · · −Z2N

...
...

. . .
...

−ZN1 −ZN2 · · · ZNN















×















I1

I2

...

IN















=















V1

V2

...

VN















where

• Zii = sum of all impedances that the mesh current Ii passes through

• Zij = sum of all common impedances for mesh currents Ii and Ij. It

is extremely important to note that if the mesh currents pass through

the common impedances in opposite directions, then Zij appears as

negative to the matrix. If the mesh currents pass through the common

impedances in the same direction, then Zij appears as positive to the

matrix.

• Vi = sum of all voltage sources in the path of mesh current i. If the

voltage source gives a potential rise to the direction of the mesh cur-

rent, it is taken to the sum as positive. If the voltage source causes a

potential drop to the direction of the mesh current, it is taken to the

sum as negative.

4. From the matrix representation, all needed mesh currents can be solved

using Cramer’s rule

In the case of controlled voltage sources, those should be written in terms of mesh

current variables (I1, I2...) to the impedance matrix before solving the matrix

equation.
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1.3.7 Properties of semiconductors

Different materials conduct electrical current differently and for that reason ma-

terials can be classified into resistors, semiconductors and conductors. To under-

stand some of the practical topics presented in other chapters of this book, it is

necessary to briefly explain the scientific background of semiconductors.

Current flow on the atomic level is directly related to the mobility of electrons.

A typical structure of a single atom is commonly described with a Bohr model,

where the electrons of an atom are placed in circular shells around the core of

the atom, as shown in Figure 1.27. The physical properties of an atom are mainly

dependent on the amount of electrons in the outermost shell. This outer shell

is named as the valence shell, and the electrons having the highest energy with

respect to the core of the atom are called valence electrons. Suitable materials

for semiconductor fabrication are silicon and germanium, which both have four

valence electrons in their valence shell according to the Bohr model.

(a) germanium (b) silicon

Figure 1.27: Bohr models of germanium and silicon atoms

Especially in metals the atoms of the material align themselves in systematic

structures. These structures are called lattices, which most often appear in three

basic types; simple cubic, body centred cubic and face centred cubic. For the

most common semiconducting materials such as silicon and germanium, the lat-

tice structure is called a diamond lattice, which can be constructed by joining

face centred lattices suitably together. The unit cell of a diamond lattice struc-

ture is depicted in Figure 1.28. In this lattice the atoms are located in every

corner, in the centre of every face and four atoms are inside the cube somewhat

symmetrically. [16, pp. 8–11]

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



1.3 BASIC CONCEPTS OF ELECTRONICS 61

Figure 1.28: A diamond lattice

The Bohr model is a simple model for the electron band (or orbital) structure,

but does not reveal how the electrons create the current flow inside a slab of

material. In the so-called Drude model, the valence electrons are taken to be the

conduction electrons by forming an electron gas inside the material. The valence

electrons are free to move inside the material, continuously colliding with other

electrons. This brings in a stochastic element to the motion of the electrons inside

a metal conductor [17, pp. 2–6]. Figure 1.29 shows the idea of the electron gas

of valence electrons inside a conductor.

(a) Single atom (b) Many atoms

Figure 1.29: Drude theory of electron gas

The Drude model describes pure conductors better than semiconductors, for
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which the Bohr model is adequate enough for creating a realistic image of the

current flow in the atomic level. When several silicon or germanium atoms are

interconnected as a solid piece of material, the four valence electrons form co-

valent bonds with each other to keep the atom structure firmly together. When

the valence electrons are given a certain amount of energy (heat, voltage, work),

they are able to dislocate from the valence band of the atom. Outside the va-

lence band the electrons are considered to be in a conduction band, where they

are free to move around toward other atoms. After travelling randomly for some

time in the conduction band, the free electrons relocate back to a valence band

of another atom, which has also lost an electron, leaving a dismounting hole for

the free electrons. A rapid exchange between free electrons and holes creates the

current flow mechanism in a semiconductor.

There exists an energy gap that the valence electrons need to pass from the en-

ergy level EV of the valence band to the energy level EC of the conduction band.

Mathematically the energy gap is simply defined as the difference EG = EC−EV .

The magnitudes of these energy gaps are material-dependent, being 0.66 eV for

germanium and 1.12 eV for silicon [18, p. 72]. Figure 1.30 indicates the differ-

ences in energy gaps between insulators, semiconductors and conductors. The

EC

EF

EV

EC

EV

EC

EV

insulator semiconductor conductor

Figure 1.30: Energy gaps for an insulator, a semiconductor and a conductor

Fermi level EF indicates the highest energy level, which is occupied by electrons

with a 50 % probability at any temperature. When temperature is increased

from absolute zero (0 kelvins), the probability to have electrons above the Fermi

level increases slightly. The further away the Fermi level is from the conduction

band, the more unlikely it is that there will be electron exchange between the

valence band and the conduction band. For conductors the Fermi level is inside
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the conduction band so that current will certainly flow, but for pure (or intrinsic)

semiconductors the probability is quite low.

As also seen in Figure 1.30, in semiconductors the Fermi level is in the middle

of the valence and conduction bands. This is due to the fact that in an elec-

trically neutral semiconductor crystal the free electron concentration and hole

concentration are equal. Naturally all the dislocated free electrons occupy the

conduction band and all the holes are the empty spaces left in the valence band.

Therefore, the valence band concentration NV indicates holes (positive charge)

and the conduction band concentration NC refers to the free electrons (negative

charge).

To increase the conductivity of a semiconductor, impurity atoms are added to the

pure semiconductor crystal. The impurity atoms will bring along either one extra

electron (atoms with five valence electrons) or one extra hole (atoms with three

valence electrons). These add up to the intrinsic concentrations as donor ND or

acceptor NA concentrations as shown in Figure 1.31. The impurity atoms will

make the pure semiconductor either a negatively charged n-type or a positively

charged p-type semiconductor. The added energy due to the impurity atoms will

bring the energy levels closer to the Fermi level as indicated in Figure 1.31.

NC

NV

NC +ND

NV

NC

NV +NA

EC

EF

EV

EC

ED

EV

EC

EA

EV

pure semiconductor n-type semiconductor p-type semiconductor

Figure 1.31: Energy gaps for intrinsic, n-type and p-type semiconductors

Related to the intrinsic conduction and valence band concentrations, the quanti-

ties of

n = NCe
−(EC−EF )/kT and p = NV e

−(EF−EV )/kT (1.77)

can be defined to indicate the temperature dependency of the concentrations NC

and NV . In equation (1.77), k is the Boltzmann’s constant and T is the tem-
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perature. Additionally, n refers to the negatively charged electrons and p to the

positively charged holes. The product

np = NCNV e
−EG/kT and also np = n2

i , (1.78)

where ni refers to the concentration of the intrinsic semiconductor. The concen-

trations n and p can be assigned with subscripts to clarify the n-type and p-type

semiconductors, and still the products

nnpn = nppp = n2
i

are all equal to the square of the total concentration of the pure semiconductor.

In an n-type material the free electron concentration is approximately equal to

the density of the donor atoms. Also, since in the n-type semiconductor NA = 0,

the electron and hole concentrations can be evaluated against the concentration

of the donor atoms, namely

nn ≈ ND and pn =
n2
i

ND

. (1.79)

Similarly, in the p-type semiconductor

pp ≈ NA and np =
n2
i

NA

. (1.80)

The n- or p-type semiconductors are of no use when treated as separate elements.

The magic happens to the energy gap when the combined pn junction is exam-

ined. Figure 1.32 explains what happens at the junction when the p-type and

n-type substances are brought in direct contact. The most interesting part of Fig-

ure 1.32 is the energy term E0 at the middle of the junction. The mathematical

expression for this energy can be evaluated qualitatively from the figure. When

the energy terms

E1 = EV p − EF − 1

2
EG and E2 = −ECn + EF − 1

2
EG

are added together, the energy at the junction

E0 = E1 + E2 = EG − (ECn − EF )− (EF − EV p).

From equation (1.78) one can solve the expression for the energy gap:

EG = kT ln
NCNV

n2
i

,
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EV p

ECp

EV n

ECn
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space charge
regionp region n region

conduction band

valence band

conduction band
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1
2EG
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2EG1

2EG

1
2EG

E1

E2E0

Figure 1.32: The energy gap of a pn junction

and when substituting n = ND and p = NA into the equations (1.77)

ECn − EF = kT ln
NC

ND

and EF − EV p = kT ln
NV

NA

.

With these intermediate results the expression for the junction energy becomes

E0 = kT ln
NDNA

n2
i

.

Using the results of equations (1.79) and (1.80), the combined concentrations of

the pn junction can be used to define E0 as

E0 = kT ln
pp0
pn0

= kT ln
nn0

np0

.

Solving for pp0 yields

pp0 = pn0e
E0/kT = pn0e

V0/VT , (1.81)

where V0 is the voltage over the pn junction in the equilibrium state. In this state

no external voltages have been applied to the pn junction.

If a forward bias voltage is applied over the pn junction, holes are injected from

the p region to the n region. The concentration pn of holes in the n region is

increased according to equation

pn(x) = pn0 + Pn(0)e
−x/Lp , (1.82)
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pn0

pn(x)

pn(0)

Pn(0)

concentration

distance
junction

pn

x

Figure 1.33: Hole concentrations at the pn junction

where the parameter Lp is the hole diffusion length in the n region. Figure

1.33 illustrates the exponential decrease of the concentration density pn(x) with

distance x into the n region. Related to the concentration rates of holes in the n

region, the diffusion hole current

Ipn = −AeDp
dpn
dx

=
AeDpPn(0)

Lp

e−x/Lp . (1.83)

If the hole concentrations at the edges of the space-charge region are pp and pn

in the p and n regions respectively, a total barrier potential VB existing over the

pn junction obeys the law

pp = pne
VB/VT ,

which is the Boltzmann equation of kinetic gas theory. If the junction is biased

in the forward direction by applying voltage V , the barrier potential is decreased

from the equilibrium value V0 as VB = V0 − V . The hole concentration in the p

region is in constant equilibrium pp0, but in the n region the hole concentration

varies with distance. At the junction x = 0, and the Boltzmann relation is

pp0 = pn(0)e
(V0−V )/VT .

When this equation is combined with equation (1.81),

pn(0) = pn0e
V/VT . (1.84)
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This equation is referred to as the law of the junction. It indicates that for a pos-

itive forward bias voltage, the hole concentration pn(0) at the junction is greater

than the equilibrium value pn0. The hole concentration Pn(0) injected into the n

region is obtained from equations (1.84) and (1.82) as

Pn(0) = pn0
(
eV/VT − 1

)
. (1.85)

The hole current Ipn(0) crossing the junction into the n region is given by equa-

tion (1.83). Since the current is evaluated directly at the pn junction, the distance

x according to Figure 1.33 is x = 0, and using equation (1.85) as Pn(0), the cur-

rents

Ipn(0) =
AeDppn0

Lp

(
eV/VT − 1

)
and Inp(0) =

AeDnnp0

Ln

(
eV/VT − 1

)
.

The total current flowing across the junction can be written simply as

I = I0
(
eV/VT − 1

)
,

where

I0 =
AeDppn0

Lp

+
AeDnnp0

Ln

.

The derivation explains how the current flow depends exponentially on the volt-

age V , which is the voltage applied over the pn junction. This dependency be-

tween junction voltage and current flow is a fundamental result, which can be

applied to describe the basic behaviour of junction currents in semiconductor

diodes and transistors. [19, pp. 115–126]

1.3.8 Properties of transistors

Transistors are semiconductor devices, typically made from silicon but earlier

also from germanium materials. There exist many different types of transistors.

The basic categorisation is usually made between bipolar junction transistors

(BJT) and field-effect transistors (FET). The bipolar junction transistors are con-

trolled with input current and the FETs are controlled with input voltage. The

basic functionality is still the same in all types of transistors.

Firstly, it is necessary to introduce the symbols used to depict a bipolar junction

transistor in a circuit diagram. Figure 1.34 shows the traditional symbols for

BJTs of both polarities, npn and pnp. The BJT transistor pins are referenced in

the figure as base (B), collector (C) and emitter (E). The currents and voltages in

each transistor pin are indicated by a subscript from the pin name. For example,
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C

E

B

iC

iE

iB
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B

iC

iE

iB
NPN PNP

Figure 1.34: Schematic symbols for npn and pnp bipolar junction transistors

a direct current flowing in the base pin is denoted as IB and a pure alternating

voltage at the collector is written as vc. Normally the currents in the transistor

have both AC and DC components, which is indicated with the notations used in

Figure 1.34. The three transistor pins are connected by current equations

iE = iB + iC and iC = βF iB,

where βF is the current gain factor of a BJT.

A transistor is used in circuits by biasing it in an active operation region by setting

suitable DC voltages and currents to all three pins. Voltages and currents in

the emitter and collector circuitry are designed to be much higher than on the

transistor’s base. Weak AC signals applied to the base pin of a transistor get

transferred to the higher powered emitter-collector circuitry. When the signal is

moving through the base to the emitter-collector circuit, amplification happens as

a multiplication process of the original signal with a gain factor. This gain factor

is a natural property of transistors and typically it is > 100 by value. Nevertheless,

amplification does not come from nowhere, since the DC voltages which enable

the voltage and currents levels in the circuit need to be set with external power

sources.

A bipolar junction transistor is said to be in saturation (fully open) when a max-

imum amount of current is flowing between the collector and the emitter. When

a transistor is saturated, any increase of the base current does not increase the

collector-emitter current. Likewise, a BJT is in a cut-off state (fully closed) when

no current flows between the collector and the emitter. Between these two limit-

ing states the transistor is said to be in an active state.

The gain factor is one of the most important properties of a transistor, so it needs

to be explained in detail. The gain factor is divided into the large-signal (β), DC

(hFE or βF ) and small-signal (hfe) values of current gain. The term large-signal

refers to currents and voltages near the maximum allowed signal level range that
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the transistor can handle. The DC gain parameter is primarily used in biasing

analysis, when only direct currents are flowing through the transistor. The small-

signal alternative currents as the input to a transistor base pin are typically in the

micro or milli prefix range and are truly small as the word suggests.

All of these different types of gain parameters are defined slightly differently, for

example, the large-signal gain factor is defined as

β =
IC − ICB0

IB − (−ICB0)
,

where ICB0 is the leakage current between the collector and the base. This type of

definition implies that the large-signal current gain is determined for DC signals

only.

The DC current gain is officially defined as

hFE =
IC
IB

= βF .

The notation βF indicates that this gain parameter refers to a configuration where

the transistor is biased in the forward active mode. There also exists the reverse

current gain βR, but it is not commonly used or referred to. The notation βF is

adopted to be used extensively in the following chapters instead of hFE because it

seems to be a more commonly used notation in other similar literature. Since the

leakage current ICB0 is typically very small compared to IC and IB, it is normally

allowed to approximate that the large-signal gain is the same as the DC gain, i.e.

β ≈ βF .

There also exists a relation between the small-signal and large-signal gain factors,

namely,

hfe =
∂IC
∂IB

= β + (ICB0 + IB)
∂β

∂IB
.

If the approximation is taken that βF = β, then

hfe =
βF

1− (ICB0 + IB)
∂βF

∂IC

.

Generally the DC current gain βF depends on the biasing setup of the transistor

so that changes in IC will also slightly affect βF . For a crude approximation

it is usually adequate to assume that βF is constant for all values of IC . From

this assumption it follows that one can take hfe = βF . This is because the DC

current gain βF is normally directly given in the transistor datasheets as a single

value, and therefore it is easy to also use it for approximating the small-signal
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current gain. This approximation is used frequently in this text when equations

are derived for pen-and-paper calculations and it should be not taken as the

whole truth but only as a crude approximation. [19, pp. 242 – 243].

In the following subsections the focus is on the basics of BJT transistors, since

knowledge of the general BJT properties lays a stable foundation for understand-

ing other types of transistors. The design and analysis of transistor circuits consist

of two parts. Firstly, the DC levels of the circuit need to be fixed so that the tran-

sistor is adequately biased for amplifying AC signals, which are applied to the

base pin. As a simple example, let’s apply the whole transistor circuit analysis

procedure to the basic transistor circuit presented in Figure 1.35.

RE

RCRB1

RB2

CB

CE

CC

RS

VS

VCC

RL

Figure 1.35: A classic amplifier circuit using a single transistor device

1.3.9 Transistor circuit DC analysis

Transistor circuit DC analysis is commonly referred to as biasing or calculating

the quiescent values. DC analysis of transistor circuits is usually considered a

much simpler task than AC analysis. This is true to some extent since there are

no frequency dependencies in the DC setup, and therefore transistor circuit DC

modelling does not have much diversity. On the other hand, it often happens that

the systematic circuit analysis methods are not directly applicable when solving

DC currents and voltages in transistor circuits.

The general goal of transistor stage DC biasing is to set a stable voltage level to

the point where the amplified signal is taken out from the amplifier. This point

should be biased in a way that the steady state voltage there is approximately
VCC

2
if the signal to be amplified is changing symmetrically around the bias point.
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The bipolar junction transistor has an equivalent DC circuit presentation, which

can be used in place of the actual transistor symbol when doing DC analysis.

These so-called large-signal models for DC modelling of npn and pnp transistors

are presented in Figure 1.36.

B
IB

E

VBE

βF IB
ro

C

+

−

VCE

+

−

IC

IE

(a) npn

B
IB

E

VBE

βF IB
ro

C

−

+

VCE

+

−

IC

IE

(b) pnp

Figure 1.36: DC equivalent circuit models for npn and pnp BJTs

When DC functionality is concerned, these equivalent models replace the BJT

symbols in Figure 1.34. Usually the internal output resistance ro presented in

Figure 1.36 is neglected in pen-and-paper calculations because its large magni-

tude presents a practical open-terminal situation. Therefore, these models do

not contain any internal resistances of transistors, which implies that transistor

circuit DC biasing would only depend on external voltages and resistances. In

reality this is just an idealised model but it is accurate enough when considering

all other inaccuracies in the values of external components. When analysing cir-

cuits with computer simulation programs, e.g. SPICE, then all possible internal

resistances of the transistor are taken into account in simulations.

However, it is usually not necessary to use these equivalent models in calcula-

tions, since basic transistor biasing circuits are not that complex. It is also often

better to avoid using systematic circuit analysis methods (e.g. nodal or mesh

analysis as they are presented in section 1.3.6) in transistor biasing calculations

because source transformations from voltage to current and vice versa are sel-

dom possible. A reasonably systematic method based on the nodal analysis can

be however developed and it is presented later in this section

Let’s begin the DC analysis on the example circuit presented in Figure 1.35. For

tutorial purposes it is better to do the analysis in three different ways, by using

the regular transistor symbols (method [a]), using the equivalent circuit models

(method [b]) and making use of the priciples of the nodal analysis (method [c]).
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For DC analysis the circuit in Figure 1.35 is transformed into the circuits shown

in Figure 1.37.

RE

RC

VB

VE

RB1

RB2

VCC

IC

IE

IB

I + IB

I
−

+
VBE

(a) DC model

B
IB

E

VBE

βF IB
RC

+

−

C
IC

IE

RB

VBB VCC

RE

(b) Equivalent DC model

Figure 1.37: Circuit diagrams for DC bias analysis

Method [a]: The example analysis starts from the circuit shown in Figure 1.37a.

In this method a suitable set of equations needs to be invented by examining the

circuit diagram. At least equations (1.86) – (1.90) based on Kirchhoff’s laws can

be directly written from schematic 1.37a.

IC = βF IB (1.86)

IE = (βF + 1)IB (1.87)

VCC = (I + IB)RB1 + IRB2 (1.88)

VCC = (I + IB)RB1 + VBE + IERE (1.89)

VCC = ICRC + VCE + IERE (1.90)

Considering the circuit 1.37a, it might be best to first find an expression for the

base current IB. From there it is possible to calculate voltage VB at the base pin

and proceed from there to solve all the other unknowns. Current I in Figure

1.37a is the current that would normally flow through the resistors RB1 and

RB2 if the transistor would not be connected there. In addition, the base of the

transistor needs its current IB, which is naturally drawn from the power source

through the resistor RB1. When current I is solved from equation (1.88),

I =
VCC − IBRB1

RB1 +RB2

.
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Substituting this expression into (1.89) and using relation (1.87) results in

VCC =
VCCRB1 − IBR

2
B1

RB1 +RB2

+ IBRB1 + VBE + (βF + 1) IBRE.

A regrouping of terms from one side to the other gives the intermediate form

VCC − VCCRB1

RB1 +RB2

− VBE = IB

(

RB1 + (βF + 1)RE − R2
B1

RB1 +RB2

)

.

By multiplying the term VCC on left side and the term RB1 on right side with
RB1 +RB2

RB1 +RB2

(multiplication by 1), the equation is simplified into

VCCRB2

RB1 +RB2

− VBE = IB

(
RB1RB2

RB1 +RB2

+ (βF + 1)RE

)

,

and finally solving for IB yields

IB =
VCC

RB2

RB1 +RB2

− VBE

RB1RB2

RB1 +RB2

+ (βF + 1)RE

. (1.91)

With the help of IB one can calculate all the other necessary DC values in the

circuit. The goal of the biasing is to set the output DC voltage level to some

suitable value. In this case one wants to amplify sinusoidal signals, so the bias

voltage on the output should be approximately VCC/2 as stated previously. Using

IB one can now determine the voltage VC at the collector pin of the transistor to

be

VC = VCC − ICRC = VCC − βF IBRC ,

and the voltage VCE between the collector and the emitter according to equation

(1.90) is

VCE = VCC − ICRC − IERE = VC − VE.

The collector-emitter voltage VCE has significance in the sense that it can be

used to determine whether the transistor is in saturation or not. Values below

0.3 V indicate that the transistor is in saturation, e.g. fully open. Because of this

nonzero saturation voltage, the amplified signal cannot fully oscillate between

VCC and zero volts.

Method [b]: The second method of transistor DC bias analysis involves the use

of the equivalent circuit shown in Figure 1.37b. Here one needs to use a cir-

cuit analysis theorem called Thévenin’s theorem. According to the theorem, any

linear network with respect to a pair of terminals may be replaced by a voltage

generator VTh (equal to the open circuit voltage) in series with the resistance RTh
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between these terminals. The Thévenin voltage from the base circuitry in Figure

1.35 is calculated as

VTh = VBB =
RB2

RB1 +RB2

VCC , (1.92)

and the related resistance

RTh = RB =
RB1RB2

RB1 +RB2

, (1.93)

with respect to notations used in Figure 1.37b. After determining the Thévenin

voltage and resistance, the circuit diagram in Figure 1.37b yields the equation

VBB = IBRB − VBE + IERE. (1.94)

Solving equation (1.94) for IB gives

IB =
VBB − VBE

RB + (βF + 1)RE

.

When substituting the Thévenin equivalent values VBB and RB with their corre-

spondences from equations (1.92) and (1.93), equality with equation (1.91) has

been reached.

Method [c]: In this method one exploits the nodal method to identify the voltage

nodes of the circuit and writing the current equations for these nodes. If there are

a lot of nodes in the circuit, then the current equations can be written as a matrix

equation and the node voltages can be solved systematically using Cramer’s rule.

The analysis relies on Figure 1.37a, which indicates the components that affect

the static currents and voltages in this BJT amplifier. When replacing the transis-

tor with its equivalent model, one notices that the circuit in Figure 1.37a actually

has two voltage nodes, VB and VE.

However, since in this case VB and VE are related by the pn-junction voltage

VBE, the circuit has only one distinct voltage node VB. This means that only one

current equation needs to be written for that node and all the bias voltages of the

circuit can be solved using that single voltage value. It is important that there are

as many independent current equations as there are voltage nodes in the circuit.

According to the Kirchhoff’s current rule, the current equation for the voltage

node VB is:

I ′ = I + IB = I +
IE

βF + 1
(1.95)

After the current equation is written down, the next step is to express the cur-

rents using the supply voltage and the node voltages. The currents appearing in
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equation (1.95) can be expressed with respect to the node voltage as:

IE =
VB − VBE

RE

; I ′ =
VCC − VB

RB1

; I =
VB

RB2

and after substituting these voltage equations to the current equation,

VCC − VB

RB1

=
VB

RB2

+
VB − VBE

RE(βF + 1)
.

From this equation it is possible to solve the node voltage VB. With the fact that

VE = VB − VBE, one has an equation from where other biasing voltages and

currents can be solved.

These examples were given to show that there are several ways to analyse the

circuits, and eventually all of them should lead to the same result. It should be

also noted that there does not exist any fool-proof step-by-step method for tran-

sistor circuit bias analysis. Quite often the equations need to be invented from

the schematics and solved in a suitable order to reach the goal of determining

the necessary DC voltage levels at each pin of the transistor.

1.3.10 Transistor circuit AC analysis

Just like an equivalent model of the bipolar junction transistor could be presented

for DC modelling, there also exists an equivalent transistor model for AC signals.

As the DC model is called a large-signal model, the alternating current equivalent

is a small-signal model for transistors. This is because the currents to be amplified

are typically much smaller than the biasing direct currents of a transistor circuit.

Since the main goal of transistor amplifier circuits is to amplify alternating sig-

nals, the AC analysis usually gives the most important information about the

properties of the circuit. The result of the AC analysis is an equation that de-

scribes frequency dependent behaviour of the circuit. This equation obtained

from the small-signal model is the transfer function of the circuit, depicting the

ratio between the output and input voltages.

Determining a transfer function from AC equivalent models is normally a sys-

tematic process but it involves a lot of calculational effort. Usually the nodal

method (see section 1.3.6) is chosen as the analysis method, since the transistor

circuit equivalent model already contains one current source and the elementary

impedances are mostly parallel to each other.

The general transistor small-signal model is depicted in Figure 1.38. The junc-

tions between the positive and negative parts of a semiconductor transistor form
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small capacitors (Cµ, Cπ) and there are internal resistances (rb, rπ, ro) related to

all pins.

e

b
rb

rπ Cπ

Cµ

gmvπ

ro

c

e

rµ

+

−

vπ

Figure 1.38: The BJT small-signal model for AC analysis

The current-controlled current source (CCCS) in the small-signal model is desig-

nated with a parameter gm, which defines the transconductance of the transistor.

The resistance rπ together with the base pin resistance rb form the internal in-

put resistance of a BJT. For the transconductance gm and the resistance rπ there

exists a unique relation,

hfe = gmrπ, (1.96)

where hfe is the small-signal current gain factor. Equation (1.96) is used very

often in pen-and-paper calculations when analysing the small-signal model for

some specific transistor circuit. In this book, hfe and βF are taken as equal,

which is not exact, but only a good approximation. To also get numeric results

out from the equations, the approximation

gm =
|ICQ|
VT

(1.97)

is useful. The thermal coefficient VT ≈ 0.025 V at room temperature, and ICQ

refers to the direct collector current when the transistor is biased to the operating

point Q. When the transconductance is evaluated, the current gain factor hfe can

be approximated with βF and equation (1.96) can be used to solve a numerical

value for the internal resistance rπ. [15, pp. 414–415]

The general small-signal model in Figure 1.38 needs to be taken into use only

if high-frequency amplifiers are designed because the small capacitances only

limit the high-frequency response of the model. Audio signals are distinguished

as low-frequency signals, and therefore the model in Figure 1.38 can be consid-

erably simplified by neglecting all the capacitances at low frequencies. In the
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simplified low-frequency small-signal model, only the internal resistances need

to be taken into account when considering audio frequencies. The low-frequency

transistor equivalent is drawn in Figure 1.39.

e

b
rb

rπ

gmvπ

ro

c

e

+

−

vπ

Figure 1.39: A simplified low-frequency small-signal model of a BJT

For pen-and-paper calculations it is suitable to simplify this low-frequency model

even further. The only meaningful resistance in the model is rπ, which inter-

acts with the current-controlled current source. The series input resistance rb is

practically very small and the parallel output resistance ro is relatively large.

The complete small-signal equivalent schematic for the basic transistor ampli-

fier circuit is depicted in Figure 1.40. As the use of the nodal analysis method

requires, the input voltage source has been converted to a current source equiv-

alent, where the internal resistance of the source is connected parallel to the

source. Moreover, when considering only alternating currents, all DC sources are

considered to behave like a ground potential. This is why the resistors RB1 and

RC have their other ends connected to the ground level.

3
rπ

RE CE

4

gmvπ

RC

5 (Vout)

RL

CC

RB2

2

RB1

1

RS

CB

VS

RS

+ −vπ

Figure 1.40: A small-signal equivalent of the basic transistor amplifier

The small-signal model in Figure 1.40 is represented by a set of linear equations,

where the Laplace transformed impedances are used for capacitors and induc-

tors. By using the systematic method of nodal analysis, the matrix representation

(1.98) can be directly written from Figure 1.40.
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Y11 −Y12 0 0 0

−Y21 Y22 −Y23 0 0

0 −Y32 Y33 0 0

0 0 0 Y44 −Y45

0 0 0 −Y54 Y55















×















V1

V2

V3

V4

V5















=
















VS

RS

0

gm (V2 − V3)

−gm (V2 − V3)

0
















(1.98)

The nonzero elements Y11 . . . Y55 of the admittance matrix are identified only

with their corresponding indices because of limited space. The following listing

(1.99) contains the actual terms that should be substituted into the matrix above.

Because a sinusoidal input signal is assumed, a direct substitution s = jω can be

made already at this point of analysis.

Y11 =
1

RS

+ jωCB Y12 = Y21 = jωCB

Y22 =
1

rπ
+

1

RB1

+
1

RB2

+ jωCB Y23 = Y32 =
1

rπ

Y33 =
1

rπ
+

1

RE

+ jωCE

Y44 =
1

RC

+ jωCC Y45 = Y54 = jωCC

Y55 =
1

RL

+ jωCC

(1.99)

Now all the linear equations describing the circuit are in matrix form. There

are still terms in the current vector that multiply certain node voltages in the

voltage vector. Those terms can (and should) be moved to the admittance matrix

before solving the matrix equation. Since matrix equations are generally like

normal equations, terms can be added and subtracted from both sides just like

in normal equations. The transconductance term gm needs to be subtracted from

the current vector so that those appear at the admittance matrix side.

The positive gm term in the current vector on row 3 is multiplying voltages V2 and

V3. Therefore, this transconductance term should be moved to the admittance

matrix on row 3 and to columns 2 and 3 which multiply node voltages V2 and V3

respectively in the voltage vector. With some reverse engineering one can verify

that the normal matrix equation calculation throws the gm back to the current

vector, and there it is multiplying V2 and V3. From this transformation one has
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the modified admittance matrix elements

Y ′
32 = −gmrπ + 1

rπ
Y ′
33 =

gmrπ + 1

rπ
+

1

RE

+ jωCE.

Doing a similar move to the negative gm on row 4 of the current vector results in

two new elements,

Y ′
42 =

gmrπ
rπ

Y ′
43 = −gmrπ

rπ
.

In each of the above elements, the product gmrπ is equal to βF , which is the

transistor’s current gain factor in the forward-active region. To solve some of

the node voltages V1...V5, one can use the well-known Cramer’s rule to solve this

system of linear equations systematically. To get a transfer function of the system,

the ratio of Vout/Vin needs to be solved. Including the modified admittance matrix

elements and using Cramer’s rule gives a determinant division,

V5 = Vout =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y11 −Y12 0 0
VS

RS

−Y21 Y22 −Y23 0 0

0 Y ′
32 Y ′

33 0 0

0 Y ′
42 Y ′

43 Y44 0

0 0 0 −Y54 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y11 −Y12 0 0 0

−Y21 Y22 −Y23 0 0

0 Y ′
32 Y ′

33 0 0

0 Y ′
42 Y ′

43 Y44 −Y45

0 0 0 −Y54 Y55

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Notice that to solve the node voltage V5, the fifth column of the determinant in

the numerator has been replaced with the current vector. This comes from the

methodology of the Cramer’s rule. Although the determinants have quite many

elements, it is still possible to solve this division in symbolic form by writing

open the determinants using pen and paper. The benefit of this approach is that

from the symbolic transfer function it is possible to analyse what kind of effect a

certain component has on the gain properties and the frequency response of the

circuit.

To show the complexity of the symbolic expression, the determinant quotient

is evaluated and written here explicitly. The numerator expression that comes
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directly from the numerator determinant has the form

−βF
1

RSRErπ
jωCBjωCC(1 + jωCERE),

but here all the resistances multiply the denominator, so it is better to also cal-

culate the expression of the denominator and combine the numerator expression

with it. Then one has

H(jω) =
−βF (jω)

2RLCBRCCC(1 + jωCERE)

(jω)3a+ (jω)2b+ jωc+ d
,

where

a = rπCERECBCC(RC +RL)

[(
1

RB1

+
1

RB2

+
1

rπ

)

RS + 1

]

b = (βF + 1)RE

(
1

RB1

+
1

RB2

)

CBRSCC(RC +RL)+

(βF + 1)RECBCC(RC +RL) + rπ

(
1

RB1

+
1

RB2

+
1

rπ

)

×

[CERECC(RC +RL) + CBRSCC(RC +RL) + CERECBRS] +

rπ [CBCC(RC +RL) + CBCERE]

c = (βF + 1)RE

[(
1

RB1

+
1

RB2

)

CBRSCC(RC +RL) + CB

]

+

rπ

(
1

RB1

+
1

RB2

+
1

rπ

)

[CERE + CBRS + CC(RC +RL)] + rπCB

d = [(βF + 1)RE + rπ]

(
1

RB1

+
1

RB2

)

+ 1.

From this symbolic transfer function it can be deduced that it is possible to in-

crease the gain of the example amplifier by increasing the values of resistors RC

and RL. Time constants as combinations of certain pairs of R and C can also be

identified. To draw the actual frequency response curve of the example amplifier,

the transfer function can be analysed numerically using Octave or Matlab. The

numerical results are presented in the next section, where they are compared to

results obtained by using a real circuit simulator program.
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1.3.11 Input and output impedances

The input and output impedances are easily determined for a network of purely

passive components, since the sum of the impedances seen between the input and

output terminals gives the correct value directly. In transistor circuits difficulties

arise because the controlled sources are part of the impedance expression.

A systematic way to find the input and output impedances of any network is

to use a test voltage source, which is placed between the terminals where the

impedance is ’measured’. During the ’measurement’, all other voltage sources

in the network are short-circuited and current sources open-circuited (any con-

trolled source remains as is). The impedance is evaluated as the ratio of the test

voltage and the current that flows through the test source. From the configura-

tion shown in Figure 1.41, the input impedance is obtained as

Zin =
Vtest

I1
,

where I1 is the mesh current obtained by mesh analysis. Similarly from Figure

1.42,

Zout =
Vtest

I4
.

Vtest

RS
CB

ZB

rπ

ZE

ro
gmvπro

RC

CC

RLI1 I2 I3 I4

+ −vπ = I2rπ

Figure 1.41: A circuit for determining transistor circuit input impedance

RS
CB

ZB

rπ

ZE

ro
gmvπro

RC

CC

VtestI1 I2 I3 I4

+ −vπ = I2rπ

Figure 1.42: A circuit for determining transistor circuit output impedance

Another way to evaluate impedances within circuit networks is to use the Thévenin

and Norton theorems, which state that impedance equals open-circuit voltage
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divided by short-circuit current. To apply this to the transistor circuit output

impedance, the open-circuit voltage is typically equal to the output voltage ob-

tained using nodal analysis and the short-circuit current can be evaluated by

drawing a short-circuit current loop I5 after the resistor RL in Figure 1.41 and

then solving the value of the mesh current I5.

As a concrete example, the matrix equation for the output impedance circuit in

Figure 1.42 can be written from the figure to the form:
















RS +
1

sCB

+ ZB −ZB 0 0

−ZB ZB + rπ + ZE −ZE 0

0 −ZE ZE + ro +RC −RC

0 0 −RC RC +
1

sCC
















×















I1

I2

I3

I4















=















0

0

−gmvπro

−Vtest















This matrix equation follows directly from the given rules of mesh analysis, which

is covered in section 1.3.6. The term gmvπro equals gmrπI2 as indicated in Fig-

ure 1.42. To solve the matrix equation using Cramer’s rule, this term should

be moved to the impedance matrix on row 3, column 2. To find the output

impedance, solve the matrix equation for current I4 and then solve
Vtest

I4
. Draw

the absolute value of this result as a function of frequency to find out the output

impedance of the circuit at different frequencies. As a result of numeric evalu-

ation one should notice that in this specific circuit the output impedance at the

pass-band approximately equals the value of RC .

1.3.12 Circuit simulations with SPICE

SPICE comes from the words "Simulation Program with Integrated Circuit Em-

phasis". Just like the previous chapter described how to form a matrix equa-

tion from a circuit, SPICE is designed to do this automatically and solve all the

node voltages in an AC, DC and transient simulation mode. This section briefly

describes the basics of SPICE using ngspice as an example SPICE application.

Needless to say, there are several SPICE variations to choose from but the basic

idea in all of them is similar. The differences between circuit simulator programs

come from the mathematical models used to depict active circuit elements. The

used command-set also differs slightly between SPICE versions.

SPICE component models are typically linked with some schematic editor, such as
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gschem from the gEDA package for Linux. The circuit to be analysed is described

to SPICE with a file called netlist, which can often be created directly from the

schematic editor program. The netlist file is usually a normal text file, but bi-

nary files can also be used as a source for simulations. The netlist file contains

component names and the node id-tags where the components are connected.

SPICE-specific device models and user-defined sub-circuits can also be included

to the netlist file to describe the behaviour of more complex components such as

transistors and operational amplifiers.

The quiescent currents and voltages of a basic transistor circuit were calculated

in section 1.3.9. The equivalent DC simulation mode in SPICE is the operating

point (OP) analysis. The SPICE mode for the frequency response calculations

presented in section 1.3.10 is naturally AC analysis. SPICE transient analysis is

equivalent to solving the set of differential equations which describe the circuit

in the time domain. This is the same as taking the Inverse Laplace transform

from the s-domain model of the circuit.

As an example, a SPICE model for the basic transistor circuit in Figure 1.35

is created. The schematic was first drawn with gschem to semi-automate the

netlist creation. A valid circuit diagram shown in Figure 1.43 can be extracted

directly from the schematic editor. In the gschem program, one can define basic

RB1 82k RC 8.2k

RE 1kRB2 10k

200

RS CB

0.1uF

CC

0.1uF

CE 10uF

B

C

E

Q11 2

4

3

+
− V1

DC 15

0

6

RL 1k

5

V2

DC 0 AC 1 SIN(0 0.001 200)

7

 

 

Figure 1.43: A gschem model of the classic single-transistor amplifier circuit

components such as resistors, capacitors, inductors and simple voltage sources

with a model, where only the ’refdes’ and ’value’ component parameters need to

be defined. An example of the gschem parameter definitions for a basic capacitor

is shown in Figure 1.44.
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Figure 1.44: Defining essential capacitor values in gschem

To be able to obtain the correct transistor models directly to the semi-automatically

created netlist file, the SPICE-specific model parameters need to be defined to the

gschem component model. This is done by defining a specific ’model-name’ and

writing the SPICE-specific model parameters into the ’model’ field. An example

of the parameter definitions for a basic npn transistor is given in Figure 1.45.

Figure 1.45: Defining essential transistor SPICE parameters in gschem

If the netlist file is created directly from the schematic editor, one must specify

names for each individual voltage node in the circuit because SPICE uses those

’netnames’ when evaluating the node voltages. When using the gEDA electronics

design package in Linux, it is possible to create the netlist file from the gschem

schematic. By using the gnetlist application, the SPICE compatible netlist file

can be created with the command

gnetlist -g spice-sdb -o amp.net amp.sch

This command creates a netlist file amp.net from the gschem schematic amp.sch.

The created netlist is as follows:

* gnetlist -g spice-sdb -o amp.net amp.sch

*********************************************************

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *
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* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*********************************************************

*============== Begin SPICE netlist of main design ============

V2 7 0 DC 0 AC 1 SIN(0 0.001 2000)

RL 0 5 1k

V1 6 0 DC 15

Q1 4 2 3 NPN1

.MODEL NPN1 NPN (Is=1.0e-15 Bf=181)

CE 0 3 10uF

CC 4 5 0.1uF

CB 1 2 0.1uF

RS 1 7 200

RB2 0 2 10k

RE 0 3 1k

RC 4 6 8.2k

RB1 2 6 82k

.end

This is the basic form of the netlist given by the application. The actual simu-

lations can be specified when running ngspice interactively from the command

line, but for automation purposes it is better to add the simulation parameters

directly to the netlist file. The author prefers to use the .control keyword in-

side the netlist file to specify the used simulation parameters. Assuming that

one wants to examine how different values of RC affect the amplification, the

following control sequence can be added to the beginning of the netlist file:

*********************************************************

.control

ac dec 90 10 100K

alter RC 1k

ac dec 90 10 100K

alter RC 20k

ac dec 90 10 100K

set filetype=ascii

write ampdata.txt db(ac1.v(5)) db(ac2.v(5)) db(ac3.v(5))

gnuplot ampplot db(ac1.v(5)) db(ac2.v(5)) db(ac3.v(5))

alter RC 8.2k

.endc

.OP

*============== Begin SPICE netlist of main design ============

When the control parameters are ready and saved in the netlist file, the ngspice

simulation is then run with the command:

ngspice -b amp.net

This command runs ngspice in batch mode, where the result of .OP command is

printed to the screen and the results of the control sequence are stored in the file

ampdata.txt. Files for gnuplot are also generated, but the gnuplot interface in
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ngspice version 20 does not seem to be fully functional in terms of generating

the plot figure automatically (later versions work fine). Nevertheless, ngspice

manages to generate nice skeleton files for plotting with gnuplot.

Concerning the DC analysis, the following print-out is taken directly from the

operating point (.OP) analysis results provided by ngspice. It lists the node

voltages and all the basic transistor bias values of the static configuration:

No. of Data Rows : 1

Node Voltage

---- -------

-----------

V(1) 0.000000e+00

V(3) 8.764146e-01

V(2) 1.587514e+00

V(4) 7.852887e+00

V(6) 1.500000e+01

V(5) 0.000000e+00

V(7) 0.000000e+00

Source Current

-------------

v2#branch 0.000000e+00

v1#branch -1.03517e-03

BJT: Bipolar Junction Transistor

device q1

model npn1

ic 0.000871611

ib 4.81553e-06

ie -0.000876427

vbe 0.7111

vbc -6.26537

gm 0.0336995

gpi 0.000186185

gmu 1e-12

gx 0

go 4.52804e-23

cpi 0

cmu 0

cbx 0

ccs 0

The AC simulation results are obtained in the separate gnuplot data file named

as ampplot.data as requested in the netlist file. The simulated frequency re-

sponse curve can be compared with the results of the numerical evaluation of

the pen-and-paper calculation shown in the previous section. When comparing

the results from the manual calculations and the SPICE simulations, the differ-

ences are generally quite small, but the deficiencies of the manual calculation

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



1.3 BASIC CONCEPTS OF ELECTRONICS 87

are revealed when the frequency response is evaluated for several values of the

collector resistor RC . Figure 1.46 shows that a very high value of the collector

resistor biases the transistor wrongly and the resulting gain is smaller than ex-

pected. The manual evaluation method does not directly reveal this caveat in the

frequency response analysis, although the bias calculations need to be done to

find out the value of the transistor’s internal resistance rπ.
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Figure 1.46: Comparison of manual results versus simulation results

What is not that simple by manual analysis methods is that ngspice can create

time dependent transient simulation results using ’genuine’ test signals, such as

a plain sinusoid, square or sawtooth waves. Just to prove that the circuit is

actually an amplifier, let’s generate a sine wave of 1 mV amplitude and 200 Hz

as frequency, then plot the input signal and the output signal to the same plot.

For running the transient analysis in ngspice, type the command tran 1us 30ms

when the netlist is loaded and the ngspice command interpreter is active. This

command can also be added to the .control section of the netlist file.

From the resulting Figure 1.47, it can be seen that with 200 Hz Vout ≈ 4Vin. This

is in balance with Figure 1.46, where 200 Hz should have 12 dB amplification. As

a reminder, a 6 dB increase doubles the voltage amplitude, so that

Vin + 6dB + 6dB = Vin · 2 · 2 = 4Vin.
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Figure 1.47: Input signal of 1 mV and 200 Hz on the basic amplifier

The output impedance can be simulated by SPICE using the configuration indi-

cated in Figure 1.48.

RB1 82k RC 8.2k

RE 1kRB2 10k

200

RS CB

0.1uF

CC

0.1uF

CE 10uF

B

C

E

Q11 2

4

3

+
−

VCC
DC 15

0

6

5

 

 

Vtest
DC 0 AC 1

Figure 1.48: Simulating output impedance with gschem

The control section in the simulation file should include the expression to evalu-

ate the output impedance. One example to handle this is:

.control

ac dec 90 100 100K

gnuplot outimp abs(ac1.v(5)/ac1.i(Vtest))

.endc
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2

Vibes

If there is sound, there is also vibration. A guitar string is one of the most simplest

vibrating systems in the world. It might be difficult to imagine, but a piano string

would be a more complex system because of the hammer mechanism to set the

piano string into motion. One of the most important equations of physics, the

one-dimensional wave equation, can be derived from the geometry of a deflected

guitar string. The long-haired guitar hero next door, with pants so tight that they

stop blood circulation, has surely not realised what his sweaty hands are actually

tickling on... Hardcore physics in action!

2.1 A mathematical model of a guitar string

2.1.1 Setting up the coordinates

Before starting the actual derivation of equations, a decision needs to be made on

the dimensions and coordinate system used. It is safest to choose the traditional

coordinates, where x refers to the horizontal direction, y denotes vertical values

and z brings along the third dimension that expands to orthogonal directions

from the plane formed by x and y.

As shown in Figure 2.1, the guitar string is supported from origin (x = 0) and

from length L. Force ~F is pulling the string as it is normally tuned to have some

tension T . The force applied to the string makes the string stretch to length

L+∆L, but the effective length of the string still remains L, since the assumption

is made that the supports ∆ clamping the string at 0 and L have zero admittance.

This means that the string is firmly attached to the supports from both ends, so

that no vibrational energy can escape outside the supports and that the vibratory

motion of the string is restricted between 0 ≤ x ≤ L.
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y

0 L L+∆L x

ds dy

dx dz

∆ ∆

~F = Fx

Figure 2.1: The coordinate system used

Equations to model the motion of a guitar string can be mathematically con-

structed in several ways. A normal guitar string has many nonlinear properties,

which are often excluded from the differential equations of motion. These non-

linear properties arise mainly from the stiffness of metal strings, friction against

the surrounding air molecules, movement of the end supports and change of

tension during vibration. If all of these properties were included in one single

differential equation of motion, it would be impossible to find an exact solution

to the equation. For this reason, the general approach is to first define a simple

model and examine the effect of the nonlinear properties one by one against the

basic equation of motion.

As an example, one theoretical model of a guitar string can be presented as a

relation between mechanics and electrics. Equivalences in differential equations

of mechanical and electrical vibrating systems have evolved into general analo-

gies between mechanical and electrical components. Figure 2.2 makes use of

these analogies and depicts an electromechanical model for a string that is set

into motion by ’plucking’ it with a finger [20, p. 117]. As there are equivalent

circuits for electric components, there also exists an equivalent electric circuit of

a mechanical string. The quantity β in Figure 2.2 refers to mechanical resistance,

m is the mechanical mass and the term 1/k is the mechanical compliance written

in terms of the spring constant k.

Furthermore in Figure 2.2, the force F that creates the initial displacement for

the string is stored as capacitive energy (potential energy) in the string. When the

potential energy is released by plucking the string, the switch in the equivalent

circuit disconnects the DC source and lets the energy vibrate in the RLC circuitry.

This model assumes that the string is built as a sequence of infinitesimal pieces of

mechanical vibrators (mass-spring-damper systems), that all have equivalences

in terms of inductance, capacitance and resistance. The model also has external
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β1 m1
1/k1

β2 m2
1/k2

β3 m3
1/k3

βn mn
1/kn

ma

βa

F

Fma, βa

Figure 2.2: An electromechanical equivalence model for a plucked string

energy loss built in terms of air resistance βa and internal energy loss in terms

of βn, and therefore this is not an adequate approach for simple mathematical

modelling.

The so-called ’ideal string’ model is a linearised standard textbook approach to

study the basic physics of the vibrating motion of a string. This model is reduced

to be as simple as possible and it is a good starting point for taking the analysis

further to investigate the nonlinear behaviour of string motion in guitars and in

general.

2.1.2 The ideal string model

The coordinate system in Figure 2.1 and the impedance requirements for the end

supports of the string are the first restrictions (or boundary conditions) towards

the definition of an idealised mathematical model to describe the motion of a

guitar string. The general concept of an ideal string also includes other restric-

tions that simplify the mathematical modelling of the string as much as possible.

The ideal model assumes the following:

1. the string is perfectly flexible (no stiffness) with no internal energy loss

2. the end supports of the string are perfectly rigid and fixed, so that no energy

loss happens at the boundaries

3. force Fx (see Fig. 2.1) acting on the string is constant at all times
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4. deflection of the string during vibration must be small so that the changes

in the vertical force component Fy do not change the tension created by Fx

5. vibratory motion is restricted in the coordinate plane {x,y}, meaning that

no elliptical vibration trajectories are possible

6. the mass of the string is evenly distributed along the length of the string,

i.e. the string is homogeneous

7. air friction and effects of gravity are neglected

Considering the number of items on this list, one might think that the ideal model

does not represent the real world situation at all. The ultimate question that

needs to be answered is concerned with the correlation between a real world

string and this idealised model; how accurately does the idealised model simulate

a real string, and what are the key factors that make the idealised model fail. Or

does it fail after all?

The vibratory motion of a string consists of mechanical waves moving on the

string. These waves are set to motion by causing an initial displacement at some

point along the string and then releasing the string into motion. An initial dis-

placement at some specific point of the string interacts with the whole length of

the string at all times, thereby keeping the string in motion. The frequency of

vibration is directly proportional to the velocity of the waves travelling along the

string.

Based on the results derived from the ideal model of the string, elementary

physics literature [3] presents a mathematical formula to calculate the harmonic

frequencies (or upper partials) of transverse vibrations (deflections in the y-coordinate

direction) on a string. The equation for evaluating the harmonic frequencies is

fTn =
ncT
2L

=
n

2L

√

Fx

ρA
, (2.1)

where the subindex n counts through integer values [1, 2, 3, ...,∞] denoting the

different harmonic upper partials which are mixed into the motion of the string.

The variables that are required to obtain concrete results from equation (2.1) are

the length L of the string, the force Fx pulling the string in the x-direction and

the physical dimensions of the string; one needs to have the cross-sectional area

A and density ρ of the string to define a mass for the string. The wave velocity

cT of the transverse waves moving on the string is then mainly defined by the

dimensions of the string.
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Although not apparent from the specifications of the ideal model, the string also

vibrates in the direction parallel to the string (deflections in the x-coordinate

direction). These waves are called longitudinal waves. To depict the harmonic

nature of the longitudinal vibration mode, there is a similar equation for longi-

tudinal frequencies,

fLn =
ncL
2L

=
n

2L

√

E

ρ
, (2.2)

corresponding to equation (2.1). Hooke’s law is used in equation (2.2) to replace

the quotient F/A with Young’s modulus E. The longitudinal waves on the string

are possible only if the tension of the string is allowed to change during vibration.

However, this change of tension is neglected in the ideal model. The basis for the

existence of longitudinal waves is explained later when the nonlinear properties

of the string are studied. [21, p. 57]

To clarify further the concepts of transverse and longitudinal vibrations, Figure

2.3 depicts the idea and shows the actual vibrational directions and the directions

of the wave motion.

cL

cT

Figure 2.3: Transverse and longitudinal waves travelling on a string

It should be noted from Figure 2.3 that the wave velocities cT and cL of equa-

tions (2.1) and (2.2) are both parallel to the direction of the string and depend on

the physical properties and dimensions of the string. This should be interpreted

so that a wave is bouncing back and forth along the string, consisting of either

transverse or longitudinal displacement from equilibrium. It is also intuitive to

imagine that both modes of vibration can exist at the same wave and that those

vibrational modes are connected to each other’s motion. Later sections will in-

dicate how the coupling between transverse and longitudinal motion is seen in

practise.
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When the waves meet the rigidly fixed end supports, they reflect back to the

direction where they were coming from. If the supports at both ends of the

string were not ideal (mechanical admittance > 0), then energy would escape at

the points of reflection and the non-ideal reflection would alter the form of the

wave travelling in the string.

When the end supports are ideal (mechanical admittance = 0), the form of the

wave stays constant and the reflections of the waves create so-called standing

waves along the string’s length for all harmonic frequencies. Standing waves oc-

cur if there is a 180 degree phase shift at the point of reflection. This phenomenon

is described in Figure 2.4, where some selected harmonic modes of vibration are

drawn.

0
L
10

L
3

L
2

L

10·π·x
L

3·π·x
L

2·π·x
L

π·x
L

Figure 2.4: Standing wave modes in ideal string vibration

The waves drawn with a dashed line in Figure 2.4 represent the wave that has

been reflected from the rigid end support of the string. The points on the string

that do not vibrate (the points where the reflection crosses the wave) due to the

standing wave phenomenon are called nodes. The maximum amplitude points

of standing waves are called antinodes. These node points divide the string into

equally spaced portions, and subsets of these portions are related to the har-

monic frequencies of the string, as described by equation (2.1). With respect to

the plucking position, these nodes and antinodes have great importance to the

magnitudes of the upper partials.
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2.1.3 Setting up the equations

Usually some boundaries need to be set before starting to prepare a model for

some practical system. If the primary assumptions are well defined, then it is

quite straightforward to start the modelling process. The starting point for the

following analysis is the model of the ideal string described in section 2.1.2,

which is later extended to include some of the nonlinear properties as well.

Mathematical modelling of dynamic mechanical systems usually relies on the

basic equation of motion,

~F = m~a, (2.3)

which is also known as Newton’s second law of motion. As a special case when

the force acts directly in only one coordinate direction, the equation of motion

can be written in a non-vectorised form,

F = ma, (2.4)

where the direction of the force F is usually chosen to be along the x-coordinate

direction.

When a mechanical system is at rest, the net force acting on the system is zero,

which means that all forces are in equilibrium state. To set the system into mo-

tion, force differences causing a non-zero net force need to be applied to the

system. As an example, a net force of

~F = ~F(x+dx) − ~F(x) (2.5)

between some points x and x + dx of the system describes a situation that is

caused usually by some external force, which breaks the balance of the forces in

equilibrium. This break from the equilibrium state is exactly what happens when

a guitar string is plucked.

When the string is at rest, the system looks like as drawn in Figure 2.1, where

the force ~F keeping a steady tension in the string is parallel to the x-coordinate

direction, i.e. ~F = Fx. To set the string into motion by means of plucking

the string, the initial deflection given to the string in the y-coordinate direction

results in the triangular form shown in Figure 2.5.

This triangle can be formed mathematically by joining together two straight lines

with opposite slopes. The notations a and p in Figure 2.5 refer to the amplitude of

the deflection and its position along the string of length L respectively. The math-

ematical expression g(x) shown in Figure 2.5 is a piecewise continuous function,
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0

a

0 p L

g(x)=a·
[

x
p
(0≤x≤ p)−L−x

L−p
(p<x≤L)

]

g(x)

Figure 2.5: The initial triangular form of a plucked string

and with respect to the notations used, it can be used to draw the form of the

string as a function of x with the fixed values of a, p and L [22]. This function is

needed later to derive an equation of the time independent model of the string.

To set the string in motion, external force is required to create localised force

deviations along the string. With the initial deflection shown in Figure 2.5, the

total force acting on the string is ~F = Fx î+Fy ĵ, where the Fy component comes

from the external force that generated the displacement and Fx is the constant

force to keep the string at some tension T . Although force Fy is initially acting

only on one point of the string, it still connects to the other points along the

string and causes an external force along the whole length of the string.

Figure 2.6 can be thought of as a very small piece of the string sliced off from the

string of Figure 2.5. Examining the forces that are at the ends of an infinitesimal

piece of the string, it can be noticed that force differences are the result of angle

differences within the deflected string.

The assumptions listed for the ideal string require that the deflection amplitude

should be small, so that Fy is very small compared to Fx and does not noticeably

cause additional tension and stretching to the string. In this case, using the

notations of Figure 2.6 in connection with the notations of Figure 2.1, one can

set

Fx1 = Fx2 = Fx

because the tension in the x-direction was assumed to be constant at all times.

With the external force component Fy added, the magnitude of the total force

|~F | =
√

F 2
x + F 2

y , (2.6)

and it has a direction towards the tangent line of the string at every value of
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Figure 2.6: Forces acting on a small portion of a deflected string

x. The key idea is that the angle θ of the tangent line against the x-coordinate

direction is directly proportional to the deflection of the string and therefore also

proportional to the magnitude of the vertical force component Fy. Additionally,

Fy is directly proportional to Fx via the angle θ, so that Fy can be completely

defined in terms of Fx and θ. As shown in Figure 2.6, if the string is linearised

at point x0 with a straight tangent line, the net force Fy can be calculated as the

product

Fy(x0) = Fx tan θ = Fx · slope at x0. (2.7)

Based on the reference material presented in the introductory section, it is known

that by calculating a derivative at some point of a function, the value of that

derivative equals the slope at that specific point. This knowledge can be utilised

here and with the notations of Figure 2.6,

Fy1 = Fy(x0) = Fx

(
∂y

∂x

)

x0

Fy2 = Fy(x0 + dx) = Fx

(
∂y

∂x

)

x0+dx

.

(2.8)

So far, the equations of the orthogonal force components Fx and Fy have been

covered, but how about the tangentially directed total force ~F? With the relation

of equation (2.7), the magnitude of the total force from equation (2.6) can be
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written in a more informative fashion as

|~F | = Fx

√

1 +

(
∂y

∂x

)2

,

which clearly indicates the increase of the total force as a fraction of Fx in con-

nection with the slope caused by the deflection of the string in the y-coordinate

direction. The deformation of the string during vibration constantly generates

new deflections along the string, thereby keeping the string in motion. Since the

ideal model neglected all frictional forces and other losses, the motion goes on

repeating itself forever.

Now it is about time to use Newton’s second law as given in equation (2.4).

Because Fx is assumed constant, the net force acting on the differential piece

of string can be defined solely as the difference of the components Fy(x0) and

Fy(x0 + dx). Applying equations (2.8) and inserting those into equation (2.4),

Fx

[(
∂y

∂x

)

x0+dx

−
(
∂y

∂x

)

x0

]

= ma,

and using the properties of differential, the equation of motion becomes

Fx · d
(
∂y

∂x

)

= Fx
∂

∂x

(
∂y

∂x

)

dx = Fx
∂2y

∂x2
dx = ma.

When the string was at rest, i.e. completely parallel to the x-coordinate direction,

the mass m of a tiny piece of string with length dx, cross sectional area A and

density ρ is Aρ · dx. It is also known from basic physics that the acceleration a

can be expressed as a second order time derivative. With these reformulations

Fx
∂2y

∂x2
dx = ρA

∂2y

∂t2
dx, (2.9)

and the differential multipliers dx cancel each other out from both sides of the

equation (2.9). After making a few simplifications to the equation, the final form

of the so-called wave equation is written as

∂2y

∂t2
= c2T

∂2y

∂x2
, (2.10)

where the transverse wave velocity c2T is equal to
Fx

ρA
exactly as in the basic

formula (2.1) for the harmonic frequencies of transverse waves. To express the

meaning of equation (2.9) in words, it can be said that the acceleration of any

small element of the string is directly proportional to the curvature of that ele-

ment. [23, 24]
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Similarly for the longitudinal waves one can write a wave equation that corre-

sponds to equation (2.10). When the string is at rest and only under the influence

of Fx, the whole string is parallel to the x-coordinate direction and the length of

the infinitesimal piece of the string ds = dx. Adding an extra force F ′
x stretches

ds so that the relative change in ds is ∂s/∂x. Then according to Hooke’s law

F ′
x = EA

∂s

∂x
,

where E is Young’s modulus and A is the cross-sectional area of the string. To get

the string vibrating longitudinally, the piece of the string ds needs to experience

a force difference at its ends. The difference should appear in the x-coordinate

direction, and this is easily calculated as the differential

dF ′
x = F ′

x(x0 + dx)− F ′
x(x0) =

∂F ′
x

∂x
dx = EA

∂2s

∂x2
dx.

Again, this expression can be made equal with the mass and acceleration terms,

and just like in equation (2.10), the wave equation has the form

EA
∂2s

∂x2
dx = ρA

∂2s

∂t2
dx,

which is normally written as
∂2s

∂t2
= c2L

∂2s

∂x2
. (2.11)

The longitudinal wave velocity c2L in equation (2.11) is equal to E/ρ, exactly as

in the basic formula (2.2) for longitudinal frequencies of vibration. [21, p. 57]

2.1.4 Solving the transverse wave equation

So far, a few partial differential equations have been derived for transverse and

longitudinal waves in a string. However, these equations do not give much infor-

mation in this general form because the same wave equation can describe several

different applications of motion. To have a specific solution for a vibrating string,

the wave equation needs to be solved with reasonable boundary conditions. The

boundary conditions arise from the unique properties of the system, which in this

case is the ideally clamped string constrained with the restrictions described in

section 2.1.2.

The wave equation (2.10) for transverse waves can be solved using the method

of separating variables. The starting point is to make the guess that the solution

will have the form

y(x, t) = F (x)G(t), (2.12)
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where the solution is a product of separate functions of time and location. To

justify the guess, it was simply noticed in the early days of mathematics that

many partial differential equations have their solution in this form. Moreover, a

general approach would be too complicated for this purpose, albeit an interesting

way for solving.

Differentiating equation (2.12) with respect to time t and location x, two new

differential equations are obtained as

∂2y

∂t2
= FG̈ (2.13)

∂2y

∂x2
= F ′′G, (2.14)

where the two dots indicate a second derivative of time and the two commas

refer to a second derivative with respect to x. These terms, (2.13) and (2.14), can

be substituted into the original wave equation (2.10) so that

FG̈ = c2TF
′′G. (2.15)

To separate the variables, equation (2.15) should be divided by term c2TGF to

yield
G̈

c2TG
=

F ′′

F
. (2.16)

Now the variables of location and time are separated on different sides of the

equation. The most important argument is: what happens if equation (2.16) is

evaluated with certain values of x? For all different values of x, the left side of

equation (2.16) should be equal to the right side, which only depends on time.

If the left side of the equation is evaluated using different values of x, it will not

change the right side, which only depends on time. Therefore, equation (2.16)

can only be true if both sides are equal to the same arbitrary constant k. This

reasoning leads to two ordinary differential equations,

d2F

dx2

1

F
= k (2.17)

d2G

dt2
1

Gc2T
= k. (2.18)

This step is where the boundary conditions come in. The two ordinary differen-

tial equations need to satisfy the boundary conditions

a) y(0, t) = 0 = F (0)G(t) and b) y(L, t) = 0 = F (L)G(t) (2.19)
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set by the end supports of the string. In other words, these conditions mean

that the string is completely immobilised at the end supports. To find a feasible

solution to equation (2.17), it is necessary to go through all the three possibilities

for the value of the undetermined constant k.

First it should be noted that in the boundary condition equations (2.19) the prod-

uct F (x)G(t) is zero in both cases. Here one can use the product rule to deduce

that if G(t) is not zero, then F (0) = 0 and F (L) = 0.

Following the standard procedures of second order differential equations for the

solutions of k, it is necessary to examine the auxiliary equation r2 + ar + b = 0,

where the roots r1 and r2 determine the parameters in the general solution

F (x) = Aer1x + Ber2x (2.20)

of an ordinary homogeneous differential equation of the second order.

If k = 0, then r2 + 0 = 0 gives the roots r1 = r2 = 0. The general solution

of (2.17) is then F (x) = A + B, but this is not a linearly independent solution,

so F (x) = Ax + B is the correct solution. To fix the constants A and B, the

general solution is evaluated with the boundary conditions (2.19). In this case

the equation pair

F (0) = A · 0 + B = 0 F (L) = A · L+ B = 0

gives A = 0 and B = 0, which is obviously a useless solution.

If k = +p2, then r2 − p2 = 0 gives roots r1 = r2 = ±p. The general solution of

(2.17) is then F (x) = Aepx + Be−px. To fix the constants A and B, the solution is

evaluated with the boundary conditions (2.19). The resulting pair of equations

F (0) = A+B = 0 F (L) = AepL + Be−pL = 0

gives A = 0 and B = 0, which is again a useless solution. Now there is only one

option left.

If k = −p2, then r2+ p2 = 0 gives the imaginary roots r1 = r2 = ±ip. The general

solution of (2.17) is then F (x) = Aeipx + Be−ipx, and using the Euler identity,

F (x) = A(cos px+ i sin px) + B(cos px− i sin px).

This is a complex-valued solution, but a real-valued solution is needed. Accord-

ing to the theories of linear differential equations, any linear combination of

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



102 VIBES

solutions is also a feasible solution, so let’s define the notations

y1 = (C1 cos px+ iC1 sin px) and y2 = (C2 cos px− iC2 sin px),

which define the two base functions of the solution with renamed undetermined

constants C1 and C2. The new basis for the solution can be arranged by linear

combinations (sums and differences) of the form

y1 + y2 = (C1 + C2) cos px ; (y1 − y2) = i(C1 − C2) sin px, (2.21)

and after reassigning the constants as A = C1 + C2 and B = i(C1 + C2), the

solution in a basis of real-valued functions becomes

F (x) = A cos px+ B sin px, (2.22)

where the constants A and B can now generally hold complex quantities. To

determine particular values for the constants A and B, the general solution (2.22)

is evaluated with the boundary conditions (2.19). In this case,

F (0) = A cos 0 + B sin 0 = 0 F (L) = A cos pL+ B sin pL = 0.

The case F (0) says that A = 0, so then the only solution left is B sin pL = 0,

which is true when

p =
πn

L
(n = 0, 1, 2, 3, ...).

Let’s not care about the value of B just yet because the solution has now ad-

vanced to the result k = −p2, which can be substituted forward into equation

(2.18) to solve G(t). When substituting k with −p2 in equation (2.18),

d2G

dt2
+

c2Tn
2π2

L2
G = 0. (2.23)

For a change, this simple second order equation can be solved by using the

derivative notation as a differential operator acting on G. Squaring the differ-

ential equation (2.23) as

(
d

dt
+ i

cTnπ

L

)(
d

dt
− i

cTnπ

L

)

G = 0

and making use of the product rule, two separate first order differential equations

are obtained:

dG

dt
= −i

cTnπ

L
G (2.24)

dG

dt
= +i

cTnπ

L
G. (2.25)
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These can be solved easily by the method of separating variables and using di-

rect integration. Noting that the basis of solution has two exponential terms

just like the solutions obtained through the auxiliary equation justifies the fact

that exponential functions are a quite natural basis for solutions of second order

differential equations describing vibratory motion.

Based on the analysis for F (x) that indicated the imaginary roots of the auxiliary

equation to be the only sufficient solutions, the use of Euler’s formula yields

Gn(t) = An cos

(
cTnπt

L

)

+ Bn sin

(
cTnπt

L

)

.

Now the solutions for F (x) and G(t) have been found. Taking into account that

y(x, t) = F (x)G(t), the current complete solution with given boundary conditions

can be written as

yn(x, t) =

[

An cos

(
cTnπt

L

)

+ Bn sin

(
cTnπt

L

)]

sin
(nπx

L

)

. (2.26)

There exists a fundamental theorem for differential equations, which was already

used in the derivation of the solution for F (x). The theorem says: If y1 and y2 are

solutions of a homogeneous linear partial differential equation, a sum of y1 and y2

with constants c1 and c2 is also a solution. This leads to the following conclusion

that

y(x, t) =
∞∑

n=1

[

An cos

(
cTnπt

L

)

+Bn sin

(
cTnπt

L

)]

sin
(nπx

L

)

. (2.27)

The undefined constants An and Bn now also multiply the solution of F (x),

where the undefined constant B was neglected for a while. This just means that

the undefined constant of F (x) is now included in An and Bn, which still need

to be defined to obtain the complete solution for the equation that describes the

motion of a vibrating string.

The boundary conditions for the system have now been included in the current

solution of the system, but still the model does not contain any reference to the

actual properties of the string. Because the wave equation is a second order

differential equation, it is enough to determine the initial (t = 0) displacement

y(x, 0) = g(x) and velocity ẏ(x, 0) = v(x) to fully describe the motion of the

string. Setting t = 0 in equation (2.27),

y(x, 0) =
∞∑

n=1

An sin
(nπx

L

)

, (2.28)
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and this needs to be equal to the initial shape of the string, modelled by the

equation g(x), i.e. one needs to set

g(x) =
∞∑

n=1

An sin
(nπx

L

)

. (2.29)

Unfortunately the constants An are still undefined. But the equation on the right

side looks awfully familiar. It is the Fourier sine series, where the constants

An =
2

L

L∫

0

g(x) sin
(nπx

L

)

dx. (2.30)

For the initial velocity, equation (2.27) needs to be differentiated with respect to

time to reach the expression

ẏ(x, t) =
∞∑

n=1

[

−An
cTnπ

L
sin

(
cTnπt

L

)

+ Bn
cTnπ

L
cos

(
cTnπt

L

)]

sin
(nπx

L

)

.

The initial velocity is obtained by setting t = 0, leading to the equation

ẏ(x, 0) =
∞∑

n=1

Bn
cTnπ

L
sin
(nπx

L

)

= v(x), (2.31)

where the yet undefined constants Bn are determined from equation

Bn
cTnπ

L
=

2

L

L∫

0

v(x) sin
(nπx

L

)

dx

∣
∣
∣
∣
:
cTnπ

L

Bn =
2

cTnπ

L∫

0

v(x) sin
(nπx

L

)

dx.

So what is the practical significance of all this? Considering a string that is

plucked with a finger or a pick, the initial velocity is zero, multipliers Bn are all

zero and then equation (2.27) becomes

y(x, t) =
∞∑

n=1

An sin
(nπx

L

)

cos

(
cTnπt

L

)

, (2.32)

where the coefficients An will be defined by (2.30), where g(x) depicts the ge-

ometrical form of the plucked string just before releasing it into motion. After

determining all An, it is possible to simulate the vibrations of the string by plot-

ting the function y(x, t) with different values of t. Equation (2.32) can also be

written in a more intuitive form,

y(x, t) =
1

2

∞∑

n=1

An sin
[nπ

L
(x− cT t)

]

+
1

2

∞∑

n=1

An sin
[nπ

L
(x+ cT t)

]

. (2.33)
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This result is obtained with the help of trigonometric identity formulae, and it

clearly shows two identical waves with the same amplitude travelling to opposite

directions along the x-coordinate axis. [11, pp. 538–546]

The actual plot of the calculated result reveals interesting properties of the Fourier

series and the periodic motion of the ideal string. Figure 2.7 takes the viewpoint

from outside the boundaries set by 0 and L to show the idea of the periodicity of

the Fourier series. Basically the two triangular waves are periodic functions that

continue to eternity, and when the time advances, these waves are travelling in

opposite directions. When simulating the waveform of the string in Figure 2.7,

only the ten first harmonic components have been taken into the calculation, and

that is why the curves look more soft, maybe even more realistic.

0

−L 0 L

a

x

f(x−ct)

f(x+ct)

f(x−ct)+f(x+ct)

Figure 2.7: Travelling waves outside the boundaries of 0 and L

In Figure 2.7 the string has been plucked initially from the middle of the string

and the situation has evolved some units of time, making it possible to notice the

trend of the motion. The wave f(x− cT t) travels to the right and wave f(x+ cT t)

to the left. The use of the verb ’to travel’ in the context of these wave functions

is just an illusion, since immediately from time t = 0 the waves exist with all

the values of x. A focus on the vertical motion of a single point x0 at the origin

reveals that the movement has the values of a sine wave that can be imagined to

be drawn towards the positive or negative direction on the x-axis. The direction

is determined by the sign before the time variable t. The wave reflection from

the boundary is also an illusion because the sum of the two continuous waves

can be imagined to reflect at 0 and L, but actually it is just a new period of a

wave that comes from outside the boundaries and sums up with the other one.

If all the restrictions of the ideal string are valid, this motion of travelling waves

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



106 VIBES

would continue to eternity without changing the shape of the waves. If, on the

other hand, there was friction and nonideal end supports involved, the waves

would change their geometrical shape as time evolves and eventually the friction

would cause the waves to fade away completely. This is just to point out that the

equations based on the the ideal model do not indicate this fact.

Figure 2.8 shows another situation where the string has been initially plucked

nearby the other end support. This is to show that when the plucking point is not

exactly in the middle of the string, the two waves do not sum up symmetrically,

although the shapes of the waves are still symmetric. To show the symmetry of

the summed waves, Figure 2.8 should have been extended to cover a more wider

view of the x-axis because the full period of the waves f(x−cT t) and f(x+cT t) is

2L. The full period of f(x−cT t)+f(x+cT t) is also 2L, but it is always symmetric

about the point x = L.

0

0 L

a

x

f(x−ct)

f(x+ct)

f(x−ct)+f(x+ct)

Figure 2.8: Sum of the travelling waves inside the boundaries 0 and L

The Octave script presented in Appendix C can be used to simulate waveforms

of the ideal string in the closed interval [0 : L] with different plucking positions

and displacement amplitudes.

2.1.5 The significance of An: the amplitude spectrum

For the author, the most fascinating result after all this mathematical fireworks

is the fact that the geometrical shape of the string determines the sound, tone

and timbre of a vibrating string. It is also amazing that the theoretically purely

mathematical idea of the Fourier series brings actual physical results from geom-

etry. When considering the event of plucking a guitar string, it is firstly displaced

by the amount of a at point p from the equilibrium position, then released to
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vibrate freely. The geometrical form of the plucked string was already presented

in Figure 2.5. Although that depiction exaggerates the deflection, the triangular

form is realistic and valid if a very sharp object is used to deflect the string.

The derivation for the equation of motion for the vibrating string illustrated that

the unknown factors An in (2.27) are calculated from equation (2.30), where

g(x) is the function that describes the geometrical form of the string. Using the

notations from Figure 2.5,

g(x) = a ·
[
x

p
(0 ≤ x ≤ p)− L− x

L− p
(p < x ≤ L)

]

,

and this model is quite sufficient to model a variety of initial shapes of plucked

strings. If someone wants to go for more accuracy, the obvious discontinuation

point between the two slopes at point x = p can be of course modelled to have

small roundness, but this complicates the evaluation of the factors An.

As stated before, equation (2.30) is equal to the formula for the Fourier sine

series. This series assumes that the function g(x) should be periodic and odd

[f(−x) = −f(x)]. Indeed, g(x) fulfils these requirements since it can be extended

to an odd function with a period of 2L as indicated in Figure 2.9. Now that

−a

0

a

−L −p 0 p L

g(x)=a·
[

x
p
(0≤x≤ p)−L−x

L−p
(p<x≤L)

]

g(x)

−g(−x)

Figure 2.9: Odd periodic extension of the plucked string function g(x)

the calculational prerequisites have been justified, one can proceed to solve the

factors An from equation (2.30). The calculation is relatively straightforward, but

quite lengthy. The intermediate steps of the calculation are therefore included in

Appendix A, the final result being stated as

An =
2a

n2π2

(
L

p
+

L

L− p

)

sin
(nπp

L

)

. (2.34)
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This result has physical significance because it relates the plucking position p

and displacement amplitude a to the tonal properties of the string. It is almost

unbelievable that the structure of the harmonic upper partials of the string is

solely determined by the plucking position. The result (2.34) can be visualised

by plotting an example, where p =
L

6
. According to Figure 2.10, this plucking

position creates a spectrum, where every 6th term is zero by amplitude. From

another perspective this means that the string has been plucked at a node of the

6th harmonic frequency in the standing wave pattern.

0 1 2 3 4 5 6 7 8 9 10

|An|

n

An =
2a

n2π2

(
L

p
+

L

L− p

)

sin
(nπp

L

)

Figure 2.10: A spectrum plot from the theoretical formula with p =
L

6

Generally the Fourier coefficients are complex-valued and carry also information

about the phase of the harmonic frequency components. Because using now only

the Fourier sine series, the amplitude coefficients An are real numbers. In this

case the phase of the frequency components is indicated by + or − signs of An,

so the phase of the harmonic frequencies can only be 0 or π. This is why the

spectrum is plotted using the absolute value |An|, since with the negative phase

the spectrum bins would point downwards.

After substituting the expression of coefficients An into the general solution (2.32)

for plucked strings, the function describing the motion of the string becomes

y(x, t) =
∞∑

n=1

2a

n2π2

(
L

p
+

L

L− p

)

sin
(nπp

L

)

sin
(nπx

L

)

cos

(
cTnπt

L

)

, (2.35)
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and the equation of motion for a single frequency component is

yn(x, t) =
2a

n2π2

(
L

p
+

L

L− p

)

sin
(nπp

L

)

sin
(nπx

L

)

cos

(
cTnπt

L

)

. (2.36)

These results with all terms written out explicitly in a single equation shows all

the variables that can have an effect on the motion of a plucked vibrating string.

These results are used later when differentials with respect to x and y of this

basic equation of motion are needed.

As already shortly mentioned above, the given equation derived for the harmonic

spectrum amplitudes is valid only in that theoretical case where the object used to

pluck the string is infinitely sharp and when the string is totally flexible to allow

a perfect triangular shape. A more realistic geometric description would round

the angle between the two oppositely directed slopes. This would give a better

model for plucks made with a finger or a plectrum. It would be mathematically

possible to include roundness to the function of string geometry, but then the

analytic expressions would not fit on this page. That is the main reason to try

and keep things as simple as possible.

The sharp angle in the triangular shape allows infinitely many harmonic compo-

nents to exist, but e.g. a plectrum with width δ used to pluck a string with length

L causes a cut-off for upper partials with indices above L/δ. In other words, the

wider the plucking object used, the less harmonics are observed in the resulting

vibration and eventually the sound of the string becomes quite dull without the

richness of harmonicity. [25]

2.1.6 Alternative solutions of the wave equation

The function y(x, t) given by equation (2.33) is not the only form of solution that

satisfies the wave equation (2.10). In physics and engineering it is common to

write the sum

A cosωt+ B sinωt

as a complex exponential function with a constant complex factor C = A + iB,

so that the final result is taken as the real part of

Ce−iωt = (A+ iB) (cosωt− i sinωt)

= A cosωt− Ai sinωt+ iB cosωt+B sinωt,

where the real part

ℜ
(
Ce−iωt

)
= A cosωt+ B sinωt. (2.37)
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Physicists usually justify this calculation technique by saying that the imaginary

part does not have any concrete physical meaning. Moreover, as the imaginary

part is added there from nowhere in the first place, surely it can be ignored in

the final results.

Considering the ideal string model with wave equation (2.10), the two ordinary

second order differential equations are simply solved in the form

y(x, t) = F (x)G(t) =
(
Aeikx + Be−ikx

) (
Ceiωt +De−iωt

)

= ACei(kx+ωt) + BDe−i(kx+ωt) + ADei(kx−ωt) + BCe−i(kx−ωt).

By first applying a similar procedure as in equation (2.21) to change the basis to

real trigonometric functions of sine and cosine and then transforming it back to

a complex exponential notation as in equation (2.37), the general solution of the

ideal string wave equation can be written as

y(x, t) = ℜ
(
Ee−i(kx+ωt)

)
+ ℜ

(
Fe−i(kx−ωt)

)
,

where the complex-valued constants E = e0 + ie1 and F = f0 + if1.

Alternatively, by performing the multiplication F (x)G(t) as G(t)F (x)

y(x, t) = G(t)F (x) =
(
Ceiωt +De−iωt

) (
Aeikx +Be−ikx

)

= ACei(ωt+kx) + BDe−i(ωt+kx) + BCei(ωt−kx) + ADe−i(ωt−kx),

and transforming this to the trigonometric basis yields

y(x, t) = e0 cos(ωt+kx)+e1 sin(ωt+kx)+f0 cos(ωt−kx)+f1 sin(ωt−kx). (2.38)

The complex exponential representation of this is

y(x, t) = ℜ
(
Ee−i(ωt+kx)

)
+ ℜ

(
Fe−i(ωt−kx)

)
,

or when extracting the time dependence as a common factor,

y(x, t) = ℜ
([
Ee−ikx + Fe+ikx

]
e−iωt

)
. (2.39)

There exist several wave equations similar to the one derived from the geometry

of the string. This discussion is added to show different types of functions that

are solutions to a wave equation of quite general type. The complex exponential

function is often used to present a general solution of a wave equation, and refer

to a mathematical model describing sinusoidal motion.
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The general solution of wave equation (2.10) can also be derived starting from

equation (2.38). To satisfy the boundary condition y(0, t) = 0, the constants

e0 = −f0 and e1 = −f1, so that

y(x, t) = e1 [sin(ωt+ kx)− sin(ωt− kx)] + e0 [cos(ωt+ kx)− cos(ωt− kx)] .

(2.40)

Using trigonometric formulae

sin(x± y) = sin x cos y ± cos x sin y

cos(x± y) = cos x cos y ∓ sin x sin y,

the equation for y(x, t) simplifies to

y(x, t) = 2(e1 cosωt− e0 sinωt) sin kx,

which is already in the same form as the solution presented in section 2.1.4. The

other boundary condition y(L, t) = 0 requires from equation (2.40) that kL = nπ,

or since ω = cTk, ω =
cTnπ

L
and this leads to

yn(x, t) =

[

An cos

(
cTnπt

L

)

+ Bn sin

(
cTnπt

L

)]

sin
(nπx

L

)

,

where the new constants An and Bn have absorbed previous undetermined con-

stants e0 and e1 with signs and multipliers of 2. This way exactly the same ex-

pression as in equation (2.26) is obtained. [21, p. 39], [24, p. 11]

2.2 Nonlinear effects in string vibration

In reality a vibrating string is a source of several interesting phenomena, which

mostly relate to nonlinearities in the motion of the string. In that sense the

ideal string model is not a realistic simulation model, but some predictions of

nonlinear behaviour can be derived by making simple extensions to the linear

model. The linear model only approximated that the amplitude of the vibration

was small, but other factors that affect the behaviour of the string were com-

pletely neglected. Therefore, it is justified to add these neglected factors to the

linear model one by one and see what the effect is for each source of nonlinear-

ity. Finally, a general model that correctly simulates also large amplitude string

vibrations is presented and evaluated on a simple level.

2.2.1 The effect of amplitude

Starting directly from the linear model, it is possible to analyse the effect of

plucking amplitude in the resulting vibrational motion. Large string deflections
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mainly affect the vibration frequency by shifting the harmonic frequencies due

to increased string tension. Additionally, several coupling phenomena between

the longitudinal and transverse modes of vibration are indirect consequences of

large displacement amplitudes.

In reality the length of the string changes slightly during vibration, and the larger

the displacement amplitude, the more noticeable the change in the length is. The

length of the string during vibration can be calculated by using the length ele-

ment ds2 = dx2 + dy2 of a curve and integrating (summing) those elements

through the whole length of the string. The actual change of length δL is ex-

pressed as a difference to the nominal length L, for which the analytic expression

is

δL =

L∫

0

ds− L =

L∫

0





√

1 +

(
∂y

∂x

)2

− 1



 dx. (2.41)

To have concrete results from equation (2.41), the function y(x) needs to be

inserted and the integral evaluated. The function y(x) is taken from equation

(2.32), which makes the integral of (2.41) relatively difficult to solve. Differenti-

ating (2.32) with respect to x,

∂y

∂x
=

∞∑

n=1

nπAn

L
cos
(nπx

L

)

cosωnt, (2.42)

and after inserting the coefficients An,

∂y

∂x
=

2a

π

(
1

p
+

1

L− p

) ∞∑

n=1

1

n
sin
(nπp

L

)

cos
(nπx

L

)

cosωnt. (2.43)

From equation (2.43) one can estimate the behaviour of the summed series. In

practise the string does not have any discontinuities in the interval of [0, L], and

because of the factor
1

n
, the series converges to the slope (derivative) of the string

in [0, L]. Furthermore, the slope of the string at any point of the string is always

≪ 1 or at least < 1. From here it follows that (∂y/∂x)2 ≪ 1, and it is justified to

use the binomial approximation

√

1 +

(
∂y

∂x

)2

≈ 1 +
1

2

(
∂y

∂x

)2

− 1

8

(
∂y

∂x

)4

+ · · · − · · ·+ · · · (2.44)

As usual, the first two terms of the series are taken as the estimation, and since

the series is alternating (+ · · · − · · · + · · · − · · · ), the error of the estimation is

approximately the first term not taken to the actual estimation, i.e. the fourth

order term in this case. So, with a little overestimation (because the fourth order
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term has a minus sign), the change in the string’s length can be expressed as

δL ≈ 1

2

L∫

0

(
∂y

∂x

)2

dx. (2.45)

When the series (2.42) is squared and substituted into (2.45), the equation equals

the general form of the inner product of functions. Because the trigonometric

basis of the Fourier series is orthogonal, the only terms that are not zero are

n2π2A2
n

2L2
cos2 ωnt

L∫

0

cos2
(nπx

L

)

dx.

By applying a trigonometric identity formula cos2 x =
1

2
(1 + cos 2x) to the terms

on both sides, the integral reshapes into the form

n2π2A2
n

4L2
(1 + cos 2ωnt)

L∫

0

1

2

[

1 + cos

(
n2πx

L

)]

dx,

and evaluation of the integral leads to a value of
L

2
. Therefore, the analytic

expression to approximate the change of length of the string during vibration is

written as

δL =
∞∑

n=1

n2π2A2
n

8L
(1 + cos 2ωnt). (2.46)

It is again quite amazing that the use of a trigonometric identity formula brought

physical meaning to the expression for δL. Because of the factor of 2 inside the

cosine function, the angular frequency for longitudinal oscillation due to tension

modulation is now 2ωn, i.e. two times the frequency of the transverse waves. This

is also an intuitive result since it is clear that the minimum increase of tension

due to transverse deflection is when there is no transverse deflection, and the

maximum increase comes equally from both sides of transverse deflection.

If the approximation is made that the initial tension force Fx (see Figure 2.1) is

proportional to the ratio of stretch ∆L and effective length L, the total tension

in the string is

F (t) ≈ EA
∆L

L
+ EA

δL

L
= Fx

[

1 +
∞∑

n=1

n2π2A2
n

8L∆L
(1 + cos 2ωnt)

]

. (2.47)

The time related averages of equations (2.46) and (2.47) are

L+ δL = L

[

1 +
δL

L

]

= L

[

1 +
∞∑

n=1

n2π2A2
n

8L2

]

, (2.48)
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and

Fx + δF = Fx

[

1 +
δL

∆L

]

= Fx

[

1 +
∞∑

n=1

n2π2A2
n

8L∆L

]

.

These averages increase the frequencies of the transverse vibration modes equally,

if the assumption holds that the local change of length affects the string equally

along the whole distance of the string. This is the same as assuming that the

longitudinal waves travel in the string with a much greater velocity than the

transverse waves. If this is the case, the change in tension is fast enough to af-

fect the whole string before changing considerably at some local position of the

string. [26]

By applying these reformulations to the basic equation (2.1) for the frequencies

of the harmonic modes of transverse vibration, with a simplifying approximation

fTn + δfTn

fTn

=
f ′
Tn

fTn

≈

√

1 +
δL

∆L

1 +
δL

L

≈ 1 +
1

2

δL

∆L
. (2.49)

This result indicates a relative increase of all harmonic frequencies by a constant

factor proportional to the increased tension in the string during vibration.

In related literature this frequency increase (or decrease from the increased state)

is also known as pitch glide and this effect is commonly observed in all plucked

string instruments. Pitch glide is most dominant right after the string is plucked

and vanishes rapidly as the vibration amplitude decreases over time. [27]

2.2.2 The effect of friction

If there was no friction or other energy losses involved in the motion of the string,

it would never stop vibrating. Friction causes a damping effect that eventually

forces the motion of the string to stop and return to a balanced state of rest.

If friction is taken into account in the mathematical model of the ideal string, the

general one-dimensional wave equation becomes

ρA
∂2y

∂t2
+D(ω)

∂y

∂t
= Fx

∂2y

∂x2
dx, (2.50)

where D(ω) is a general frequency dependent damping coefficient. This type of

wave equation is solved using the same method of separating variables, which

helped to solve the general wave equation (2.10). The general form of the solu-

tion is expected to be the product

y(x, t) = F (x)G(t),
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which is substituted into equation (2.50) to yield

ρAFG̈+D(ω)FĠ = FxGF ′′. (2.51)

Dividing equation (2.51) by the term FGρA gives the separated form

G̈

G
+

D(ω)

ρA

Ġ

G
= c2T

F ′′

F
,

and additionally dividing by c2T yields

G̈

c2TG
+

D(ω)

c2TρA

Ġ

G
=

F ′′

F
. (2.52)

Again following the already familiar argument that both sides of equation (2.52)

have to be equal to a constant, named e.g. k, results in two ordinary differential

equations,

d2F

dx2

1

F
= k (2.53)

(
d2G

c2Tdt
2
+

D(ω)

c2TρA

dG

dt

)
1

G
= k. (2.54)

From here equation (2.53) gives the same solution as in the case of the wave

equation (2.10). The modification comes in only from the time dependent equa-

tion, which (by following the derivation of equation (2.10)) can be rewritten in

the form
d2G

dt2
+

D(ω)

ρA

dG

dt
+

c2Tπ
2n2

L2
G = 0. (2.55)

From here one can proceed to solve the equation as a ’textbook example’. First an

auxiliary equation in terms of the order of the differentials is written for variable

r and the resulting quadratic equation

r2 +
D(ω)

ρA
r +

c2Tπ
2n2

L2
= 0

is solved to give the roots

r1,2 = −D(ω)

2ρA
±

√
(
D(ω)

2ρA

)2

−
(cTπn

L

)2

.

The term involving cT will be dominant, leading to the complex conjugate roots

r1 = −D(ω)

2ρA
+ i

√
(cTπn

L

)2

−
(
D(ω)

2ρA

)2

r2 = −D(ω)

2ρA
− i

√
(cTπn

L

)2

−
(
D(ω)

2ρA

)2

,
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where i =
√
−1 has been taken as a factor in front of the square root term. Using

the linear addition of sine and cosine as earlier to get rid of the imaginary part

of the solution leads to the general solution

Gn(t) = An cos(ωnt)e
−α + Bn sin(ωnt)e

−α,

where

ωn =

√
(cTπn

L

)2

−
(
D(ωn)

2ρA

)2

and α =
D(ωn)

2ρA
.

From here it is already evident that all the factors leading to energy loss in the

string are generally lowering the frequencies of the harmonic modes of vibration.

The damping term D(ωn) is frequency dependent, so that the harmonic frequen-

cies will deharmonise unequally due to different energy loss mechanisms.

In the setup of a vibrating string there are several factors that lead to the damp-

ing of the vibration. Considering the string itself, there are two main sources of

damping: the effect of air viscosity and internal friction forces. These are asso-

ciated with individual decay time constants τ1 and τ2 respectively. For thin steel

strings the more noticeable of these two loss mechanisms is the viscous loss of

energy into the air. The internal damping becomes dominant in nylon strings,

especially if the nylon strings are over-spun with thin metal wire. [28] [25]

The analytic treatment of the effect of viscous losses is way too complicated to

be derived from first principles. The primary work for this has been done by

Stokes [29] a very long time ago, and the results are applied to strings of mu-

sical instruments by Fletcher [28]. Here the results are just referenced without

modifications.

Due to the viscosity of air flow, the frictional retarding force FR experienced by a

cylinder of length L and radius r moving with frequency f and velocity c is given

by

FR ≈ 2π2ρafcr
2L

(

2
√
2M + 1

2M2

)

,

where ρa is the density of air and

M =
r

2

√

2πf

µa

,

where µa is the kinematic viscosity of air. In practical strings the value of M is in

the order of 1.0 or less. Now, because FR is proportional to velocity c, the kinetic

energy involving FR will be proportional to the square of the velocity. Evaluation
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of the rate of change in energy can be done qualitatively as

dE

dt
= FRc = 4πρaf

1

2

mc2

ρ

(

2
√
2M + 1

2M2

)

,

where the mass m of the string has been forced into the equation using the

substitution πr2L =
m

ρ
to get the familiar term of kinetic energy to the right side

of the equation. Dividing by that kinetic energy term one obtains the energy ratio

dE
1

2
mc2

=
4πρaf

ρ

(

2
√
2M + 1

2M2

)

dt,

where the term on the right side has the units of s−1 when the dt term is ne-

glected. The decay time constant due to viscous air flow around the string is

therefore the inverse of the right side, namely

τ1 =
ρ

4πρaf

(
2M2

2
√
2M + 1

)

.

According to Fletcher and Rossing [21, p. 54], expansion of the term in paren-

theses leads to a complex dependency between the string radius and frequency

of vibration. Due to variations in M , the time constant τ1 ∝ ρr2 is independent

of frequency at low frequencies. At high frequencies τ1 ∝ ρr2/
√
f .

Attenuation due to internal friction comes into play when the material of the

string is investigated in detail. Advanced level materials physics defines Young’s

modulus as a complex quantity

E = E1 + jE2,

which is used, for example, in a relaxation formula developed by Debye. Accord-

ing to that theory, the imaginary part of Young’s modulus depends on frequency

and has a resonance peak at some specific frequency. In a more complex use

case, both components E1 and E2 are depending on frequency.

If the complex form of Young’s modulus is substituted into a regular wave equa-

tion that describes the motion of a string, the imaginary term E2 will result in

an imaginary exponential term that automatically is related to energy loss and

indicates decay. Fletcher [25] has found that the decay time due to internal

damping

τ2 =
1

πf

E1

E2

,

indicating that the decay time is inversely proportional to frequency. It is claimed

that the internal friction is not that meaningful in steel strings, but for nylon

strings it might contribute as a major source of decay.
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In addition to the effects of air and internal damping, a third decay mode giv-

ing a time constant τ3 can be distinguished and it is related to the energy loss

through the end supports of the string. This decay mechanism is discussed more

thoroughly in section 2.2.4 in the same context along other theories about the

effect of end supports.

The three decay mechanisms conribute individually to the total decay time. The

additions between the decay times is done invertibly, so that

1

τtot
=

1

τ1
+

1

τ2
+

1

τ3
.

Figure 2.11 visualises dependency between individual decay times and the fre-

quency of string vibration. The analysis has been made from the viewpoint of

the fundamental frequency, hence the increase of frequency is obtained by in-

creasing the tension of the string. Therefore the analysis only gives a qualitative

forecast about the decay times of the upper partials that appear along with the

fundamental frequency.

ln τ

ln f1

τ1

ρ, r

ρ, r

τ2

E2

τ3

1

Zm

ρ, r

Figure 2.11: Time constants τ1, τ2 and τ3 with the affected variables depicting

frequency dependent string vibration decay. The figure is adaptively redrawn from

reference [21].

2.2.3 The effect of stiffness

The linear model that leads to the simple wave equation (2.10) assumes the string

to be completely flexible, meaning that the string does not cause any mechanical

resistance to bending. In reality it is quite obvious that strings used in musical
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instruments have stiffness, which deviates the mathematical model of the string

from the ideal approximation.

~F

M
y(x)

dx

Φ

x x+ dx

(
dy

dx

)

(x)

(
dy

dx

)

(x+dx)

Figure 2.12: Torque M acting on a stiff piece of dx

The situation can be clarified with reference to Figure 2.12, where the infinites-

imal piece of string dx is stressed by torque M , which relates to force ~F via

length dx. The left side of the string is aligned parallel to the x-axis, and the

torque bends the right side to the angle Φ measured against a vertical reference

crossing through the centreline of the string. The essential variables that are not

marked in Figure 2.12 are the cross-sectional area of the string A, Young’s mod-

ulus E, and the halved radius (a/2) of the string denoted as κ, which refers to

the radius of gyration of the circular cross-section of the string.

To bend the length dx of the string by angle Φ, a torque

M =
EAΦκ2

dx
(2.56)

is needed [23, p. 153]. If the angle Φ is assumed to be small, it can be ap-

proximated with the difference of slopes at the ends of the infinitesimal piece

of the string. The first term of the Maclaurin series representation of the arcus

tangent is used as the approximation because the slope is defined as tanφ =
dy

dx
,

from where the angle φ is the arcus tangent of the slope and Φ = φ1 − φ2 with a

reference to Figure 2.12. The approximation is applied as

Φ ≈ −
[(

∂y

∂x

)

(x+dx)

−
(
∂y

∂x

)

(x)

]

= −d

(
∂y

∂x

)

= −
(
∂2y

∂x2

)

dx

and after inserting the expression of Φ into equation (2.56),

M ≈ −EAκ2 ∂
2y

∂x2
.
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It is suitable to question the units of this equation - does the equation really have

the units of torque on both sides? Dimensional analysis yields

kg · m

s2
· m = − kg · m

s2 · m2
· m2 · m2 · m

m2
= −kg · m

s2
· m.

Both sides are still equal! The dimensions of partial derivatives might be tricky

sometimes, but now it was easy since y(x, t) measures the deflection of the string

in the y-coordinate direction.

In static equilibrium the difference of torque at the ends of the infinitesimal piece

of string dx equals the force acting on length dx as

F dx = dM =
∂M

∂x
dx = −EAκ2 ∂

3y

∂x3
dx,

where the dx cancel each other out from both sides of the equation.

Finally to reach the equation of motion, the difference of forces needs to be

evaluated and made equal to the mass and acceleration of the string. This starts

as

dF = F (x+ dx)− F (x) =
∂F

∂x
dx = −EAκ2 ∂

4y

∂x4
dx = ρAdx

∂2y

∂t2
,

and leads to

− Eκ2

ρ

∂4y

∂x4
=

∂2y

∂t2
. (2.57)

In equation (2.57) the displacement dependent term describes the elasticity of

the material when external forces are applied to it. [23, p. 153]

Equation (2.57) can be attached to the basic wave equation (2.10) to get

c2T
∂2y

∂x2
− c2Lκ

2 ∂
4y

∂x4
=

∂2y

∂t2
. (2.58)

It is irrelevant in this context to try and solve this differential equation, although

a solution can still be found with the method of separating the variables and

solving the second and fourth order differential equations with respect to some

boundary conditions.

Since at the moment there is an interest only in the general behaviour of fre-

quencies for different modes of vibration, dispersion relations can be used to

approximate the behaviour of this equation. The essential variables in dispersion

relation equations are angular frequency ω and wave number k. These quantities

can be used to calculate the wave velocity

cp =
ω

k
,
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which is also known as the phase velocity. A differential of the wave velocity

leads to a concept of group velocity,

cg =
∂ω

∂k
.

The phase velocity refers to a velocity of a wave with a single frequency, whereas

the group velocity is the velocity of an envelope containing a combination of

several waves. The propagation of waves that have a nonlinear relation between

ω and k is described to be dispersive. [18, p. 4]

In the case of a general solution for wave equation (2.10), the function

y(x, t) = Aei(kx−ωt)

depicts an extracted basis of a solution, a single sinusoidal waveform with an

arbitrary amplitude constant A, identified with wave number k and angular fre-

quency ω, moving along the string. By substituting this trial solution into the

model of (2.58), the behaviour of the trial sinusoidal function is examined in the

model of a stiff string. After the substitution, equation (2.58) looks like

−k2c2TAe
i(kx−ωt) − k4c2Lκ

2Aei(kx−ωt) = −ω2Aei(kx−ωt),

from where the minus signs and the trial functions cancel each other out. Now

there exists a quadratic equation for k2, and using the quadratic formula,

k2 = − c2T
2c2Lκ

2
±

√
(

c2T
2c2Lκ

2

)2

+
ω2

c2Lκ
2
. (2.59)

For further analysis the root with the positive sign is chosen because the other

root yields negative values. Negative values would make k imaginary, mean-

ing an unphysical solution. With this choice of a positive sign, equation (2.59)

simplifies to form

k2 = − c2T
2c2Lκ

2
+

c2T
2c2Lκ

2

√

1 +
4c2Lκ

2ω2

c4T
,

and binomial approximation is applied to this form on the basis of the quotient

term being small compared to unity. The approximation leads to

k2 = − c2T
2c2Lκ

2
+

c2T
2c2Lκ

2

(

1 +
1

2

4c2Lκ
2ω2

c4T

)

,

and this simplifies greatly to
ω

k
= cp ≈ cT ,
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meaning that at low frequencies the wave velocities cp of the upper partials are di-

rectly related to the velocity of the transverse waves, just like in the ideal model.

For high frequencies the term with ω in equation (2.59) dominates, so the ap-

proximation is simply

k2 ≈
√

ω2

c2Lκ
2
,

from where
ω

k
= cp ≈

√
cLκω.

This result indicates that as the frequency grows, the more dispersive the wave

motion in the string is.

Approximate solutions for the differential equation (2.58) have been derived by

Morse and Ingard [24, p. 190]. The general effect modifying the equation for

the harmonic frequencies (2.1) is that the stiffness property of the string alters

the harmonic frequencies as

fTn ≈ n

2L

√

Fx

ρA



1 +
2

L

√

EAκ2

Fx

+

(

4 +
n2π2

2

)
EAκ2

FxL2



 . (2.60)

This result can be visualised by plotting the equation (2.1) for the harmonic fre-

quencies and equation (2.60) side by side for the initial modes of vibration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f
[H

z]

n

ideal string

stiff string

Figure 2.13: Harmonic frequencies versus nonharmonics
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2.2.4 The effect of end supports

In the ideal case, the string was assumed to be perfectly clamped from both ends,

so that the mechanical admittance of the boundary points was identically zero.

This means that no energy can escape through the end supports, and that the

supports do not move due to the motion of the string.

In reality a guitar string is only supported by the bridge and nut, where the string

is not firmly clamped between massive elements to fasten the string. Due to their

low mass and open structure, the end supports of a guitar might slightly follow

the motion of the string and let the string move also at the top of the support.

Additionally, the bridge and nut supporting the real string dissipate energy as

they are mechanically coupled to the body of the guitar.

Figure 2.14 gives an idea of the forces that are affecting the string at the end

supports.

~F

Fx

Fy

x = 0

Fy = Fx

(
dy

dx

)

(x=0)

Fx ≈ |~F |

θ θ

x = L

(
dy

dx

)

(x=L)

= −
(
dy

dx

)

(x=0)

Figure 2.14: Forces at the boundary of the vibrating string

For small amplitude vibration, the angle θ between the string and the alignment

of the support is small. Hence, the transverse force Fy can be taken as a linear

approximation Fx
∂y

∂x
as indicated in Figure 2.14. The transverse force is therefore

defined as a fraction of the force Fx, which is the initial tension force to stretch

the string to normal playing tension.

To get an idea of the behaviour of the transverse force of the string impacting

the end supports, the equation of motion (2.35) of the plucked string needs to be

differentiated with respect to x and evaluated at x = 0 or x = L for the bridge

and the nut respectively. The result of the differentiation is already presented in
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equation (2.43), and evaluation at the bridge, x = 0, yields

∂y

∂x
=

2a

π

(
1

p
+

1

L− p

) ∞∑

n=1

1

n
sin
(nπp

L

)

cos

(
cTnπt

L

)

. (2.61)

From here it follows that the linearised transverse force Fy has a magnitude

Fx
∂y

∂x
= Fx

2a

π

(
1

p
+

1

L− p

) ∞∑

n=1

1

n
sin
(nπp

L

)

cos

(
cTnπt

L

)

. (2.62)

It is interesting to note that when more and more harmonic frequency compo-

nents are summed together in equation (2.62), the functional shape of the force

at the bridge approaches a square wave as shown in Figure 2.15.

0

0 T 2T

Fy [N]

period [T]

L/2

L/15

Figure 2.15: Transverse force at the bridge (x = 0) for different plucking locations

In Figure 2.15, the symmetric square wave describing the magnitude of the trans-

verse force is a result from plucking the string at the middle. The dashed square

wave is calculated from a pluck at distance
L

15
measured from the bridge. The

initial deflection is taken to be in the positive y-axis direction, as indicated in

Figure 2.5. If the initial deflection is in the negative direction, then the force in

Figure 2.15 also changes its sign. The resulting square wave is not that obvious

when looking at equation (2.62), but when all the terms in the Fourier sum are

added together, the waveform approaches a square wave with some tiny ripple

at the edges. [25]
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For the end supports at x = 0 and x = L it is possible to define a complex-valued

mechanical impedance

Zm = Rm − iXm = Rm − i

(

mω − k

ω

)

, (2.63)

where the real part defines a mechanical resistance and the imaginary part de-

fines mechanical reactance. The reactance of the end support can be classified to

be related to mass m or stiffness (spring constant) k, which are the mechanical

equivalents for inductance and capacitance respectively. The reason for using

a minus sign in front of the reactance term follows from the fact that the con-

vention of using e−iωt to describe the time dependency of wave motion will be

adopted later in this section. Normally in electric engineering one uses ejωt as

the time dependent factor so that the mechanical impedance would be expressed

as Zm = Rm + jXm. [23, p. 133]

A relation of

Zm =
F

c
(2.64)

exists between mechanical impedance and force F via velocity c. When con-

sidering the end supports, the velocity term comes from the time derivative of

the function for the string, and the force is the vertical component of the total

force affecting the end support. Therefore, the relation of equation (2.64) can be

written as

Zm

(
∂y

∂t

)

= Fy ≈ Fx

(
∂y

∂x

)

. (2.65)

As it was indicated during the derivation of the equation of motion for the ideal

string, the resulting waveform can be represented as two similar waves travelling

in opposite directions. Based on the discussion in section 2.1.6, the mathematical

representation of these two waves in a certain linear combination can be written

as

y(x, t) =
(

A+e
iω
cT

x
+ A−e

− iω
cT

x
)

e−iωt, (2.66)

where the continuous waves are travelling to the positive and negative directions

of the x-coordinate with complex-valued amplitudes A+ and A− respectively.

Because of the boundary conditions, the sum of these waves should be 0 at x = 0

and x = L. Therefore it can be imagined that only one wave is moving between

the boundaries and reflecting to the opposite direction from the boundary points.

This way of thinking keeps the vibration inside the boundaries, although the

mathematical description of the waves is periodically continuing to eternity.

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



126 VIBES

The complex exponential function shown in equation (2.66) is just one linear

combination of solutions to the wave equation (2.10). It should be noted that only

the real part of the complex exponential representation is physically meaningful.

The imaginary part should be carried along with the calculations, but in the end

only the real part is extracted as the final result.

The boundary condition at both ends of the string should satisfy equation (2.64),

in which the impedance is a complex quantity but not a vector, since the focus

is on the impedance and force in the y-coordinate direction only. However, the

boundary condition is not the same at locations x = 0 and x = L. This difference

is depicted in Figure 2.14, where identical waves approach the boundaries from

opposite directions. The slope of the string at x = 0 can be calculated normally

in the positive x-direction, but at x = L the slope of the identical wave calculated

in the positive x-direction will give an opposite slope. [23, p. 134]

The slope at x = 0 is calculated as

f(x0 + dx)− f(x0)

(x0 + dx)− x0

=
f(x0 + dx)− f(x0)

dx

and similarly the identical slope is calculated at x = L as

f(xL − dx)− f(xL)

(xL − dx)− xL

=
f(xL − dx)− f(xL)

−dx
= −f(xL − dx)− f(xL)

dx
.

The similarity of the identical waves of opposite directions states that f(x0) =

f(xL) and f(x0 + dx) = f(xL − dx). Therefore,

(
dy

dx

)

(x=L)

= −
(
dy

dx

)

(x=0)

.

This leads to the boundary conditions

(
∂y(x, t)

∂t

)

(x=0)

=
Fx

Zm0

(
∂y(x, t)

∂x

)

(x=0)

(2.67)

and (
∂y(x, t)

∂t

)

(x=L)

= − Fx

ZmL

(
∂y(x, t)

∂x

)

(x=L)

. (2.68)

Keeping in mind the solution of the wave equation as a sum of two separate

waves moving in opposite directions, at the vicinity of the end support the form

of the string is defined as the sum of the incident and reflected waves. This is

modelled by equation

y(x, t) =
(

Aie
iω
cT

x
+ Are

− iω
cT

x
)

e−iωt, (2.69)

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



2.2 NONLINEAR EFFECTS IN STRING VIBRATION 127

where Ai is the amplitude of the incident wave and Ar is the amplitude of the re-

flected wave. The wave amplitudes A+ and A− from equation (2.66) are renamed

in equation (2.69) as Ai and Ar to clarify the reflection process. Equation (2.69) is

still the same as equation (2.66), but now it should be thought of as a one single

wave reflecting from the end points. Assigning the rightwards moving wave as

the incident wave chooses the boundary at x = L as the point of reflection.

Since Ai is now approaching the boundary at x = L, equation (2.69) is substituted

into the equation for the boundary condition (2.68). After differentiations on the

left and right sides, this evaluates to

(

Aie
iω
cT

x
+ Are

− iω
cT

x
)

=
Fx

cTZmL

(

Aie
iω
cT

x − Are
− iω

cT
x
)

.

A simplification of this result gives

Ar

(
Fx

cTZmL

+ 1

)

e
−2 iω

cT
x
= Ai

(
Fx

cTZmL

− 1

)

,

where the exponential term equals 1 at x = L and x = 0. A further simplification

leads to the quotient
Ar

Ai

= a+ ib =
1− z

1 + z
, (2.70)

where

z =
Zm

ρAcT

describes the relation of the impedances of the end support Zm and the nominal

mechanical impedance of the string

ρAcT =
Fx

cT
= Zs.

Normally Zm > Zs, so the derived result simply indicates that the reflection from

an unideal end support reduces the amplitude of the wave and causes phase

changes to a sinusoidal wave moving along the string. The phase changes ap-

pear because the quotient (2.70) has a real and imaginary part, and the phase is

calculated in relation to this complex quantity.

If the problem is analysed to the other direction, the amplitudes Ai and Ar change

places in equation (2.69) because now the incident wave travels to the negative

direction. In this case the boundary condition (2.67) is used for substitution.

The preceding analysis considered only the case where incident and reflected

waves consisted only of a single frequency component with wave number k and

angular frequency ω. A real plucked string has all of its harmonic frequencies
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summed as a single waveform, so the situation is a bit different in that case. To

take account of all n frequency components, one just needs to replace the single

ω in equation (2.69) with ωn.

Generally the characteristic impedance of the string and the impedance of the

end support vary with frequency. In this case all the wave components in the

plucked string would experience a different impedance both at the string and

at the end support. Each frequency component would have a different phase

and amplitude coefficient. One would have to calculate the reflection properties

for all frequency components separately, and at the end sum them all together

to form a model of the reflected wave. It would be nice to draw a picture of

the shape of a plucked string at the vicinity of an end support that has finite

impedance, but it might be a complicated task.

At least one thing is clear; the unideal end supports quickly mess up the triangu-

lar form of the two travelling wave components of the plucked string because all

the frequency components go out of phase and their amplitude relations change.

In addition, unideal end supports also alter the nominal frequencies of the har-

monic components of vibration. To prove this, one needs to resolve the wave

equation (2.10) using the boundary conditions (2.67) and (2.68). These bound-

ary conditions can be precalculated to a certain degree using the fact that the

time derivative of equation (2.69) is −iωny(x, t), so that the boundary conditions

become

y(0, t) = − Fx

iωnZm0

(
∂y(x, t)

∂x

)

(x=0)

(2.71)

and

y(L, t) =
Fx

iωnZmL

(
∂y(x, t)

∂x

)

(x=L)

. (2.72)

Now one needs to redefine the factor k in equation (2.17).

Earlier it was noticed that if k = −p2, then the auxiliary equation r2 + p2 = 0

gives the imaginary roots r1 = r2 = ±ip. The general solution of (2.17) is then

F (x) = Aeipx +Be−ipx, which can also be written as

F (x) = A cos px+ B sin px.

To redetermine the values for the constants A, B and p, the solution is re-

evaluated with the boundary conditions of unideal supports. When x = 0,

F (0) = A cos 0 + B sin 0 = −p
Fx

iωnZm0

(−A sin 0 + B cos 0) ,
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so that

A = −p
Fx

iωnZm0

B.

Then at x = L,

−p
Fx

iωnZm0

B cos pL+ B sin pL = p2
Fx

iωnZmL

Fx

iωnZm0

B sin pL+ p
Fx

iωnZmL

B cos pL.

According to Morse [23, p. 142], one can assume that
Fx

iωnZm

is very small

and the square of this term can be neglected in approximation. To satisfy the

boundary conditions, the factor p needs to be solved from

−p
Fx

iωnZm0

cos pL− p
Fx

iωnZmL

cos pL+ sin pL = 0.

Using again the argument that pL will make the value of sine approach zero

and the cosine approach to one, a linear approximation of these trigonometric

functions can be used. Hence,

−p
Fx

iωnZm0

− p
Fx

iωnZmL

+ pL = 0.

To make this equation true in the linear approximation of sine and cosine, the

impedance terms must disappear to leave only pL = 0. To still fulfil this condition

that the sine will be zero for all integers n, one needs to define p as

pL

(

1 +
Fx

iωnZm0L
+

Fx

iωnZmLL

)

and apply this to the equation pL = nπ as before. Because we now have the

result k = −p2, the equation (2.18) can be used to solve G(t).

When substituting k with −p2 into equation (2.18)

d2G

dt2
+

c2Tn
2π2

L2

(

1 +
Fx

iωnZm0L
+

Fx

iωnZmLL

)2

G = 0,

and this differential equation leads to the auxiliary roots

r1,2 = ±i

(

ωn +
Fx

iZm0L
+

Fx

iZmLL

)

. (2.73)

To make this result plausible, the definition of mechanical admittance is

Ym =
1

Zm

=
1

Rm − iXm

=
Rm + iXm

R2
m +X2

m

,

following the definition of mechanical impedance given in equation (2.63). Sub-

stituting the expression of mechanical admittance into equation (2.73) leads to

the roots

r1,2 = ±i

[

ωn +
Fx

L

(
Xm0 − iRm0

R2
m0 +X2

m0

)

+
Fx

L

(
XmL − iRmL

R2
mL +X2

mL

)]

.
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These roots give the set of solutions

yn(x, t) = G(t)F (x) = e−λt (Cn cosΩnt+Dn sinΩnt)F (x),

where the damping term

λ =
Fx

L

(
Rm0

R2
m0 +X2

m0

+
RmL

R2
mL +X2

mL

)

and the modified angular frequency term

Ωn = ωn +
Fx

L

(
Xm0

R2
m0 +X2

m0

+
XmL

R2
mL +X2

mL

)

.

As a general statement, it can be concluded that if the impedance of the end

support is equivalent to stiffness (capacitance), Xm = −k

ω
, the upper partials are

lowered in comparison to the ideal situation. This is because of the minus sign in

front of the stiffness related reactance term. The stiffness controlled end support

moves in phase with the string’s motion. If the end support is equivalent to mass

(inductance), Xm = mω, and the motion of the end support is out of phase with

the string and the upper partials are raised. [23, p. 146]

The results also show that mechanical resistance Rm of the support causes a

damping term to the equation of motion of a vibrating string. This is also an

intuitively correct result and it is nice to notice that it is in alignment with the

mathematical evaluation. The factors that lead to specific decay times are pre-

sented by Fletcher [25]. The equation (2.64) can be used to give an approximate

indication of the quantities that affect the decay times in the end support.

The energy gained when deflecting the string from rest to the initial triangular

shape equals the work done over the deflection amplitude a, namely

E0 = aFx
dy

dx
∝ a2Fx

(
1

p
+

1

L− p

)

, (2.74)

where only the dimensional variables have been included in the calculation. With

the help of equation (2.1), the force term Fx can be expanded to a group of

relevant dimensional variables. Taking along only the fundamental frequency f1,

the force

Fx = f 2
1 4L

2πr2ρ, (2.75)

and this can be substituted into equation (2.74), which then reads

E0 ∝ a2f 2
1L

2r2ρ

(
1

p
+

1

L− p

)

,
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retaining only the variables with decent dimensional properties, so that the units

on both sides of the equation are still equal.

According to article [25], the rate of energy loss at the bridge is

dE

dt
= −c2Zm,

where the velocity term c2 is intended to be evaluated from the expression (2.32).

Fortunately the velocity can also be written using equation (2.62) and equation

(2.64) as

c2 =
F 2
x

Z2
m

4a2

π2

(
1

p
+

1

L− p

)2
1

n2
sin2

(nπp

L

)

cos2
(
cTnπt

L

)

.

In accordance with the previous equations, only the velocity of the fundamental

frequency is needed for the analysis. Taking again only the dimensionally rele-

vant terms and using equation (2.75) to expand the force term, the rate of energy

loss

dE

dt
∝ − 1

Zm

a2f 4
1L

4r4ρ2
(
1

p
+

1

L− p

)2

∝ −E0

Zm

f 2
1 r

2ρ

(
L2

p
+

L2

L− p

)

.

From here it is possible to solve the energy relation dE/E0, and the remaining

set of variables has the unit of s−1. The associated decay time constant is the

inverse of this and has the form

τ3 ∝ Zm

f 2
1 r

2ρ

(
L2

p
+

L2

L− p

) .

According to this result, the rate of energy loss at the supports depends on the

frequency and also the dimensions and material properties of the string. The

decay time varies as f−2 and this becomes noticeable in situations where the end

support is relatively light compared to the mass of the string or when a finger tip

is used to stop the string on a fretless bass guitar, for example.

According to another study by Legge and Fletcher [30], unideal end supports

are also guilty of coupling energy to harmonic frequency components that are

initially at zero amplitude in the spectrum of a vibrating string. The experimental

method used a flexible end support and the string was plucked at certain node

locations. The observations showed that after the string was released to vibrate,

the frequencies originally dampened by the effect of the plucking position gained
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energy in a timescale of nearly one second and then started to decay. Moreover,

energy transfer between all modes of vibration happens more commonly when

the end supports are not ideally rigid.

2.2.5 Coupling between directions of vibration

Although the effect of large amplitude string vibrations in the transverse direc-

tion was noted to generate longitudinal vibration, it is not the main reason for

energy transfer, i.e. coupling, between the transverse and longitudinal modes of

vibration.

To focus more comprehensively on the transverse vibrations of a nonlinear string,

the results leading to equation (2.49) can be used to construct a more general

equation on motion,

∂2 ~R

∂t2
+ λ

∂ ~R

∂t
− c2T



1 +
1

2∆L

L∫

0

∣
∣
∣
∣
∣

∂ ~R

∂x

∣
∣
∣
∣
∣

2

dx




∂2 ~R

∂x2
= 0. (2.76)

The effects of large amplitude vibration are taken into account in equation (2.76)

by adding an integral term, which with reference to equation (2.49)

1

2∆L

L∫

0

∣
∣
∣
∣
∣

∂ ~R

∂x

∣
∣
∣
∣
∣

2

dx =
1

2

δL

∆L
.

This term increases the wave velocity cT of the transverse waves during the vibra-

tion period. The increase is proportional to the stretching of the string by amount

δL as a fraction of the stretch ∆L, which measures the initial tension applied to

the string to achieve some frequency of vibration. Equation (2.76) is therefore a

better approximation than the basic wave equation (2.10) derived from the ideal

string model. Equation (2.76) also includes a general damping term λ, which

describes the energy losses during the vibration. [31]

The general solution to the differential equation (2.76) would be a Fourier series

expansion from the string geometry, where the position vector of the string

~R(x, t) =
∑

Cn(t) sin
(nπx

L

)

.

However, this is not the exact solution because there does not exist an analytic

solution to equation (2.76). A simpler approach is to examine only the solutions

for the fundamental frequency component, namely

~R(x, t) = ~r(t) sin
(πx

L

)

.
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This way all coupling to the upper partials is ignored, and with the help of inter-

mediate results,

∂2 ~R(x, t)

∂x2
=

∂2

∂x2
~r(t) sin

(πx

L

)

= −~r(t) sin
(πx

L

) π2

L2

and

1

2∆L

L∫

0

√

(~r • ~r) cos2
(πx

L

) π2

L2

2

dx = (~r • ~r)π
2

L2

1

4∆L

L∫

0

1 + cos

(
2πx

L

)

dx,

the analysed equation (2.76) reduces to the form

∂2~r

∂t2
+ λ

∂~r

∂t
+ ω2

0

(
1 +K~r 2

)
~r = 0, (2.77)

where ω2
0 =

c2Tπ
2

L2
and K =

π2

L

1

4∆L
.

According to article [31], there are only a few special cases where a stable solu-

tion to this differential equation can be found in a stationary frame of reference,

which is also known as the standard inertial reference frame. The main idea is

to look for solutions in a rotating frame of reference, more generally known as a

non-inertial reference frame, which enables to find a general numerical solution

to equation (2.77). To understand the concept of a rotating frame of reference,

some basic introduction might be needed at this point. The theoretical founda-

tions of a rotating reference frame presented here are adapted quite directly from

the textbook of Marion and Thornton [32].

The connection between a stationary reference frame and a rotating reference

frame is visualised in Figure 2.16, where the stationary, or fixed, frame is denoted

with the coordinate axes xf , yf and zf , and the axes of the moving frame are

identified with the normal x, y and z coordinates. With the notations used in

Figure 2.16, the point P can be located from the fixed frame with the vector

~rf = ~R + ~r, (2.78)

where vector ~R connects together the origins of the two coordinate systems.

The goal is to derive expressions that allow to locate point P with vectors from

both coordinate systems. In this situation the frame with the x, y and z coordi-

nates is rotating and point P has the position vector

~r(x, y, z, t) = âi+ bĵ + ck̂, (2.79)

in the rotating coordinate system. The fundamental question is that if the coef-

ficients a, b, c are all functions of place and time, how to express the motion of
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yf

y

xf

x

zf

z

P

~R

~rf

~r

Figure 2.16: Stationary (inertial) and rotating (non-inertial) frames of reference

point P from the view point of the stationary coordinates xf , yf , zf? Differentiat-

ing the position vector (2.79) with respect to time,

(
d~r

dt

)

fixed

=
d

dt

(

âi+ bĵ + ck̂
)

=
da

dt
î+

db

dt
ĵ +

dc

dt
k̂ + a

d̂i

dt
+ b

dĵ

dt
+ c

dk̂

dt

=

(
d~r

dt

)

rot

+ a
d̂i

dt
+ b

dĵ

dt
+ c

dk̂

dt

because this gives the rate of change in the stationary frame of reference and

the orthogonal unit vectors are also moving with respect to the stationary frame.

The subscripts fixed and rot refer to the coordinate systems where the specific

quantity is evaluated. It is essential to keep in mind that vector ~r pointing to P

from the origin of the rotating reference frame can be measured in the rotating

frame as well as in the fixed frame and the subscripts are used to clarify that.

At this point it is still a bit unclear how to evaluate the derivatives of the unit

vectors î, ĵ and k̂.

Figure 2.17 depicts a situation where an infinitesimal rotation vector δ~θ is turned

around its axis, so that a position vector ~r attached rigidly to some coordinates

is rotated by the amount of angle δθ. The goal is to express the small change

δ~r along curve s in terms of the rotation vector δ~θ. A cross-product δ~θ × ~r is

possible, but only when δ~r is orthogonal to the directions of δ~θ and ~r. Figure

2.17 is deliberately drawn to show that a large rotation of angle δθ does not

provide an orthogonal δ~r. The orthogonality condition is satisfied only when δ~r

is tangential to the circumference s of the rotation, that is, when the angle of
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δθ δ~r
s~r

δ~θ

~r + δ~r

Figure 2.17: Infinitesimal increment δ~r by rotation δ~θ

rotation is an infinitesimally small differential quantity δθ. Then the expression

δ~r = δ~θ × ~r

is valid to describe the movement of ~r. Based on this jewel of information, the

derivative
d̂i

dt
=

d~θ

dt
× î, and similarly to other orthogonal directions. Therefore,

(
d~r

dt

)

fixed

=

(
d~r

dt

)

rot

+
d~θ

dt
×
(

âi+ bĵ + ck̂
)

=

(
d~r

dt

)

rot

+ ~ω × ~r, (2.80)

where ~ω is the angular velocity, i.e., the rate of change of the rotation.

By differentiating the equation (2.78) with respect to time,

(
d~rf
dt

)

fixed

=

(

d~R

dt

)

fixed

+

(
d~r

dt

)

fixed

=

(

d~R

dt

)

fixed

+

(
d~r

dt

)

rot

+ ~ω × ~r,

an expression of velocities

~cf = ~Cf + ~cr + ~ω × ~r (2.81)

is obtained. Velocity ~cf in equation (2.81) is the velocity relative to the stationary

(fixed) axes, ~Cf is the linear velocity of the origin of the rotating reference frame,

~cr is the velocity term relative to the rotating axes, ~ω is the angular velocity of

the rotating axes and ~ω×~r is the velocity due to the rotation of the moving axes.

[32, pp. 388-391]

From the expressions of velocity it is possible to differentiate once more with

respect to time, giving the equation in terms of acceleration ~a. The expression of

acceleration combined with mass m leads to an expression of force

~F = m

(
d~cf
dt

)

fixed

= m~af .
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This needs to be done to adapt the familiar Newton’s law ~F = m~a to the non-

inertial reference frame. The basic Newton’s law is valid only when identifying

point P with position vector ~rf , which is drawn from the origin of the inertial

frame. To take the non-inertial frame into use, one needs to express the force

using the position vector ~r, which is drawn from the origin of the non-inertial

frame. The view to the non-inertial frame can be taken either from the inertial

or non-inertial frame as seen later.

The differentiation of velocity equation (2.81) is written explicitly as

(
d~cf
dt

)

fixed

=

(

d~Cf

dt

)

fixed

+

(
d~cr
dt

)

fixed

+
d~ω

dt
× ~r + ~ω ×

(
d~r

dt

)

fixed

,

where
(
d~cr
dt

)

fixed

=

(
d~cr
dt

)

rot

+ ~ω × ~cr

~ω ×
(
d~r

dt

)

fixed

= ~ω ×
(
d~r

dt

)

rot

+ ~ω × (~ω × ~r).

After notational simplification,

~af = ~Af + ~ar +
d~ω

dt
× ~r + 2~ω × ~cr + ~ω × (~ω × ~r). (2.82)

The equation (2.82) creates a simple relation to the acceleration terms observed

in the stationary frame ~af and rotating frame ~ar together. The essential thing

is that both accelerations are now expressed using the position vector ~r of the

rotating frame of reference, which enables to change the viewpoint between the

reference frames quite easily. With these definitions of acceleration, an observer

in the stationary frame experiences a force m~af and an observer in the rotating

frame experiences a force m~ar, where the expression for ~ar can be solved from

equation (2.82). In both cases the actual motion is happening within the rotating

frame and it is identified by the position vector ~r of the rotating frame.

The most relevant terms arising from equation (2.82) are the Coriolis force term

2m~ω×~cr and the centrifugal force term m~ω×(~ω×~r). The centrifugal force reduces

to form −mω2~r via the vector triple product rule

~ω × (~ω × ~r) = (~ω • ~r)~ω − (~ω • ~ω)~r = −ω2~r

if ~ω has a direction that is normal to the radius vector. [32, p. 392]

Now there is enough background information from rotating reference frames

to proceed with the equation of motion for the coupled nonlinear string. The
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position vector to draw the motion of the string is now moved from the stationary

reference frame to a rotating reference frame by placing the acceleration term

substitution

~af = ~ar + 2~ω × ~cr − ω2~r

(
∂2~r

∂t2

)

fixed

=

(
∂2~r

∂t2

)

rot

+ 2~ω ×
(
∂~r

∂t

)

rot

− ω2~r

into equation (2.77). Due to this substitution, the resulting partial differential

equation

∂2~r

∂t2
+ λ

∂~r

∂t
+ 2~Ω× ∂~r

∂t
− Ω2~r + ω2

0

(
1 +K~r2

)
~r = 0 (2.83)

has the necessary terms of the Coriolis force and centrifugal force included and

the position vector ~r is measured in the rotating reference frame. Since the

substituted acceleration term is the one that describes the forces in the stationary

frame of reference, the results obtained from this partial differential equation

will depict the motion seen by the eyes of a person attached to the fixed inertial

frame. Note that the angular velocity regarding the rotating frame is written

with ~Ω, because the small ω0 was already reserved for the angular velocity of the

transverse vibrations. Obviously the direction of ~Ω is perpendicular to the radius

vector. To make it more clear,

~Ω = Ωxî and ~r = Y ĵ + Zk̂.

Regarding both transverse components, the differential equation (2.83) can be

separated into two coupled differential equations:

∂2Y

∂t2
+ λ

∂Y

∂t
− 2Ω

∂Z

∂t
+ {−Ω2 + ω2

0[1 +K(Y 2 + Z2)]}Y (2.84)

∂2Z

∂t2
+ λ

∂Z

∂t
+ 2Ω

∂Y

∂t
+ {−Ω2 + ω2

0[1 +K(Y 2 + Z2)]}Z. (2.85)

This coupled second order differential equation pair can be solved and simulated

numerically, using basic methods described by Kreyszig [11, pp. 902–908]. The

simplest approach is to apply the Euler method, which is intended for solving

first order differential equations numerically. It is also possible to extend the

Euler method to second order systems by adding a second pair of variables to

denote the derivatives of the first variables. Using the quantities Y and Z from
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equations (2.84) and (2.85), the extension yields

y1 = Y, y2 =
dY

dt
⇒ dy1

dt
= y2, (2.86)

z1 = Z, z2 =
dZ

dt
⇒ dz1

dt
= z2. (2.87)

With similar reasoning, the Euler method can eventually be extended to cover

differential equations of any degree. When applying this numerical method to

equations (2.84) and (2.85), the following set of equations is obtained:

ẏ1 = y2 (2.88)

ẏ2 = −λy2 − 2Ωz2 − {−Ω2 + ω2
0[1 +K(y21 + z21)]}y1 (2.89)

ż1 = z2 (2.90)

ż2 = −λz2 + 2Ωy2 − {−Ω2 + ω2
0[1 +K(y21 + z21)]}z1. (2.91)

In the preceding equations, the notations ẏ and ż have been used to denote the

time derivative of the respective variables.

By choosing suitable values for the parameters K, λ, Ω and ω0, different kinds of

orbital precession trajectories can be simulated. Figures 2.18 and 2.19 visualise

one clear coupling situation, which in practise can happen only with loosely

tightened and very flexible strings.
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Y
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Figure 2.18: A simulated precession trajectory of a nonlinear string vibration

For the sake of clarity, Figure 2.18 shows only the beginning of the vibration
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sequence that creates the ’oscilloscope trace’ of the waveform shown in Figure

2.19. The precession trajectory is depicted as it would be seen by the eyes of

a person attached to the stationary frame, as the substituted acceleration term

described the acceleration experienced by a point in the stationary frame. If the

motion in the {yz}-plane would be observed as attached to the rotating frame,

the string would have a constant elliptic trajectory. The preceding motion of the

rotating frame at angular frequency Ω is seen by the viewer in the stationary

frame and this sums up to be observed as a precessing elliptical motion of the

string. Analysis in the inertial frame would only reveal one solution as a special

case, but the rotating frame analysis leads to a general solution with numerous

different trajectory variations.

Z

Y

Figure 2.19: Coupling of vibrational modes on yz-plane motion

Figure 2.19 is a projected view from the rotating motion of the string to indicate

the vibration amplitudes in both orthogonal transverse directions as a function

of time.

Figures 2.18 and 2.19 have been simulated in this context as a trial to reproduce

the results obtained by Gough [31]. The units used in the simulation have been

scaled to unity measures as in the original experiments. It might be difficult to

create a realistic coupling scheme with this simulation model in the first trials.

The numerical calculations need to be written with a fast programming language

such as C or Fortran because the numerical iterations of differential equations
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require many calculational steps.

The coupling between two transverse polarisation modes is obviously not the

only coupling mechanism in strings. As already discussed in section 2.2.1, the

transverse waves stretch the string longitudinally during vibration so that the

tension changes with twice the frequency of the transverse vibration. This longi-

tudinal motion will be periodic in an ideal case, so that the transverse modes can

actually create longitudinal vibration with frequencies 2ωn in situations where

the longitudinal motion is originally not present in the string vibration.

Furthermore, as already briefly mentioned in the discussion about the unideal

string supports, additional coupling through the support structure of the string

can even excite the longitudinal modes of 2ωn + ωn, which can lead to very com-

plex multi-coupling combinations between different frequencies. In the ideal

case the frequencies remain integer multiples but other nonlinearities can also

destroy the harmonic nature of the vibratory motion. [30]

2.3 Nonlinear equations of motion

The wave equation obtained from the model of the ideal string is actually only a

reduced and linearised case of a general three-dimensional model. Among other

researchers, this model was introduced by Morse and Ingard [24, pp. 856–863]

and it is taken as the de facto standard differential equation to model nonlin-

ear string motion. The vectorised differential equation removes the restriction

for small deflection amplitudes by allowing the tension of the string to change

dynamically. If the vectorised differential equation is split between each coordi-

nate direction, the equation becomes a set of three coupled differential equations.

Morse and Ingard also derive an approximate set of differential equations correct

to the third order, meaning that the differential terms appearing in the equation

are raised to the power of three or lower. This section reveals how to set up the

nonlinear differential equations and derive the third order approximation.

The primary goal is to vectorise the equation of force for all three dimensions x,

y, and z. This was already partially done when the differential equation for the

ideal string was derived in section 2.1.3, where the force was written in the form

~F = Fx î+ Fy ĵ = Fx î+ Fx

(
dy

dx

)

ĵ. (2.92)

This implies that the force in the y-coordinate direction is defined as a fraction

of the force in the x-coordinate direction, and the magnitude of the transverse
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force Fy depends directly on the geometrical slope at each point along the string.

The vectorised force describing the total force has a direction to the tangent line

of the string for each value of x.

What if the total magnitude of the force and its direction would be separated

in two different equations? A position vector to draw the string in the {x, y}
coordinate plane can be defined as

~r(x, t) = x î+ y(x, t) ĵ,

and the slope at each point along the x-coordinate direction is then

d~r

dx
= 1 î+

dy

dx
ĵ. (2.93)

The differential of the position vector now points towards the tangent of the

string for all values of x. Still what is needed is a unit vector of (2.93), and that

is defined as

ŝ =

d~r

dx∣
∣
∣
∣

d~r

dx

∣
∣
∣
∣

=
1 î+

dy

dx
ĵ

√

1 +

(
dy

dx

)2
. (2.94)

A unit vector always has a magnitude of unity, so it can be used to multiply other

magnitudes without affecting the absolute value.

The magnitude of ~F in equation (2.92) is

∣
∣
∣~F
∣
∣
∣ =

√

~F • ~F = Fx

√

1 +

(
dy

dx

)2

,

and the combination
∣
∣
∣~F
∣
∣
∣ ŝ = Fx î+ Fx

(
dy

dx

)

ĵ

just like in equation (2.92). Neat.

The derivation of the general equation of motion starts by defining a three-

dimensional position vector

~r(x, t) = (x+ ξ(x, t)) î+ y(x, t) ĵ + z(x, t) k̂, (2.95)

which can be used to draw the form of the string in {x, y, z}-coordinates as a

function of the x-coordinate at any given time t. A visualisation of the meaning

of equation (2.95) is presented in Figure 2.20, where the displacement of the

string has been magnified to make the position vector stand out more clearly.
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y

0 L x

ĵ

îk̂
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~r(x0, t) ξ(x0, t)

z(
x 0
, t
)

y
(x

0 ,t)

~r(x, t) = (x+ ξ(x, t))̂i+ y(x, t)ĵ + z(x, t)k̂

∆ ∆

Figure 2.20: The position vector of a vibrating string in three dimensions

To establish a similar analysis of forces that was carried out on the ideal string

in section 2.1.2, an expression for the infinitesimal piece of string is needed.

In this case the differential element of length can be directly obtained from the

definition of the position vector as

s =
√

dx2 + dy2 + dz2 =
√
d~r • d~r =

√

∂~r

∂x
• ∂~r

∂x
dx =

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
dx, (2.96)

and the magnitude of this element of length is just

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
=

√
(

1 +
∂ξ

∂x

)2

+

(
∂y

∂x

)2

+

(
∂z

∂x

)2

. (2.97)

A unit vector to define the tangent direction of the string is directly obtained

from the element of length (2.96) by dividing that with its magnitude

ŝ =

∂~r

∂x∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣

=

(

1 +
∂ξ

∂x

)

î+

(
∂y

∂x

)

ĵ +

(
∂z

∂x

)

k̂

√
(

1 +
∂ξ

∂x

)2

+

(
∂y

∂x

)2

+

(
∂z

∂x

)2
. (2.98)

With this unit vector ŝ it is possible to create a vector quantity from the magni-

tude F pulling the string as the product

~F = F ŝ. (2.99)

Since ŝ includes derivatives to all coordinate directions, equation (2.99) describes

the same situation as in the case of the ideal string, which was restricted only to

the {x, y}-plane. In this general case the total magnitude of the tension force F is

defined by equation (2.100), and when combined with ŝ, the direction of the total

force becomes the tangent direction of the string at all points along the string.

The force components Fx, Fy and Fz to orthogonal coordinate directions are

again fractions of the total force, proportional to the slope of the string against

each coordinate direction.
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y

O x0 x0 + dx x

~r(
x 0
, t
)

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
dx

Fy2

Fx2

Fz2

ŝ1

ŝ2

F ŝ2

F ŝ1

F = F0

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
+ EA

( |∂~r/∂x| dx− dx

dx

)

ŝ =
∂~r/∂x

|∂~r/∂x|

Figure 2.21: Force with directions ŝ1 and ŝ2 on a small piece of string

Now all that is needed is the expression for the magnitude of the tension force.

The general three-dimensional model for the vibrating string also takes into ac-

count the increase of string tension due to stretching that results from displacing

the string from equilibrium. This can be defined directly by Hooke’s law, assum-

ing that the dependency is linear. The ideal model required the tension to be

constant, i.e Fx, but the enhanced equation for the force pulling the string is

F (x, t) = EA

(∣
∣
∣
∣

∂~r

∂x0

∣
∣
∣
∣
− 1

)

, (2.100)

where x0 defines the relaxed length of the differential element when F (x, t) = 0,

that is when the string has not yet been stretched to initial tension. The term

in parentheses in equation (2.100) describes the relative change of length, where

the expression has been simplified a little from the form

EA
∆L

L
= EA

∣
∣
∣
∣

∂~r

∂x0

∣
∣
∣
∣
dx0 − dx0

dx0

,

which is the familiar form of Hooke’s law.

The dummy variable x0 can be cancelled out from the equation by expanding

equation (2.100) as

F (x, t) = EA

(∣
∣
∣
∣

∂~r

∂x

∂x

∂x0

∣
∣
∣
∣
− 1

)

,
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and additionally defining that

F0 = EA

(
∂x

∂x0

− 1

)

is the force that stretches the string to initial playing tension. This leads to the

final expression for the magnitude of the total force

F (x, t) = F0

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
+ EA

(∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
− 1

)

. (2.101)

The validity of the term F0 can be verified by neglecting the EA term and cre-

ating the magnitude + unit vector combination with the F0 term alone. This

combination gives a correct expression for the force, just like in equation (2.92).

Neat. [33] [34, pp. 9 – 10]

In the case of the ideal string model, the force component Fy was taken as a first

order approximation to be a fraction of the constant force Fx, so that the total

tangential force could be expressed in terms of Fx only. The generalised model

has this feature for all coordinate directions through the term with F0 = Fx as

the multiplier. The transverse motion is mainly defined by this term. The term

with EA as the multiplier adds the longitudinal motion of the string, which is

based on the changing force due to the extension and compression of the string

during vibration. This term is completely missing from the simple ideal model.

The force differentials within the ideal string are due to differences in total force

direction at the ends of infinitesimal pieces of the string. This also holds for the

general model but in addition the general model contains a force difference term

already in the definition of the force of tension [24, p. 858].

For the nonlinear model of the vibrating string, the Newtonian equation of mo-

tion can be constructed now as

ρA
∂2~r

∂t2
=

∂(F ŝ)

∂x
= ŝ

∂F

∂x
+ F

∂ŝ

∂x
, (2.102)

where the left side equals mass × acceleration as usual. After inserting the ex-

pression (2.101) of the tension force into equation (2.102),

ρA
∂2~r

∂t2
= (F0 + EA)ŝ

∂

∂x

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
+ (F0 + EA)

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣

∂ŝ

∂x
− EA

∂ŝ

∂x
. (2.103)

To write open the partial derivatives on the right side of equation (2.103), a few

intermediate results are needed. The derivative of the magnitude of the position
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vector (2.95) looks like

∂

∂x

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
=

(

1 +
∂ξ

∂x

)
∂2ξ

∂x2
+

(
∂y

∂x

)
∂2y

∂x2
+

(
∂z

∂x

)
∂2z

∂x2

√
(

1 +
∂ξ

∂x

)2

+

(
∂y

∂x

)2

+

(
∂z

∂x

)2
, (2.104)

and the partial derivative of the unit vector (2.98) is a true monster,

∂ŝ

∂x
=

∂2~r

∂x2
∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣

−
∂~r

∂x
∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣

2

(

1 +
∂ξ

∂x

)
∂2ξ

∂x2
+

(
∂y

∂x

)
∂2y

∂x2
+

(
∂z

∂x

)
∂2z

∂x2
∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣

, (2.105)

but using equation (2.104) and multiplying both sides of equation (2.105) with

the magnitude of the position vector, it simplifies to

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣

∂ŝ

∂x
=

∂2~r

∂x2
− ŝ

∂

∂x

∣
∣
∣
∣

∂~r

∂x

∣
∣
∣
∣
. (2.106)

This intermediate result is used to simplify equation (2.103), and after insert-

ing the expression of (2.106) into the second term on the right side of equation

(2.103), the final form of the general equation of motion for the vibrating string

reads
∂2~r

∂t2
= (c2L + c2T )

∂2~r

∂x2
− c2L

∂ŝ

∂x
, (2.107)

where

c2T =
F0

ρA
and c2L =

E

ρ

just in the same format as those have already appeared earlier (F0 = Fx). Still

this model neglects the stiffness of the string and damping caused by friction, but

those effects can be added relatively easily since the general form of those terms

is already known. The equation of motion (2.107) gives more accurate results

only for large amplitude string vibrations.

The final result shown here differs slightly from the equation provided by Morse

and Ingard [24, pp. 860–861] but this is due to using a different expression for

the force in equation (2.101). The force expression used in [24] assumes that

the string is already stretched to initial tension, which leads to a different term

for F0 in equation (2.101). The force term given in this context is compatible

with the one-dimensional model of the ideal string in terms of vectorisation, as

it is shown in detail. In practise the difference between the two force models is

minimal. [34]
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In their treatment [24, pp. 860–861], Morse and Ingard present a famous third

order approximation, which is separated from equation (2.107) for each vibra-

tional direction. Being third order equations, a lot of approximation is still re-

quired when starting from the general equation of motion. There are no inter-

mediate steps given for the approximation calculation in [24], even though there

is a long way from equation (2.107) to the given results. As this book tries to give

detailed information on all the topics covered, the intermediate steps leading to

the third order approximations are presented here.

Each of the orthogonal directions î, ĵ and k̂ is treated separately and partial

derivatives with respect to x are written with a subscript x, for example, yx means

a partial derivative of y(x, t) with respect to x. Starting from direction the of î:

(
∂2ξ

∂t2
− [c2L + c2T ]

∂2ξ

∂x2

)

î = −c2L
∂

∂x

[

1 + ξx
√

(1 + ξx)2 + y2x + z2x

]

î. (2.108)

To proceed from here, a binomial approximation is applied to the rightmost term

in squared brackets, and as a result,

1 + ξx

(1 + ξx)

√

1 +
y2x + z2x
(1 + ξx)2

≈ 1− 1

2

y2x + z2x
(1 + ξx)2

,

where the first two terms have been taken from the binomial series. The ap-

proximation still contains a partial derivative in the denominator and clearly the

procedure is to get rid of the denominator. That can be accomplished by making

an ’elementary school’ division:

1− 2ξx + 3ξ2x . . .

1 + 2ξx + ξ2x 1

− 1 + 2ξx + ξ2x

−2ξx − ξ2x

− −2ξx − 4ξ2x − 2ξ3x

3ξ2x + 2ξ3x

− 3ξ2x + 6ξ3x + 3ξ3x

−4ξ3x − 3ξ3x

· · ·

Eventually the division would yield an infinite series, where the resulting terms

appear to the topmost row. In this case only the first two terms are needed, so
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with the remainder term, the result form the division is

1

(1 + ξx)2
= 1− 2ξx +

3ξ2x + 2ξ3x
(1 + ξx)2

.

A substitution of the result of the division along with the binomial approximation

into equation (2.108) gives

(
∂2ξ

∂t2
− [c2L + c2T ]

∂2ξ

∂x2

)

î = −c2L
∂

∂x

[

1− 1

2

(
y2x + z2x

)
(1− 2ξx)

]

î.

After differentiating the constant 1 away, the final form of the î directional (lon-

gitudinal) third order wave equation reads

∂2ξ

∂t2
− [c2L + c2T ]

∂2ξ

∂x2
=

1

2
c2L

∂

∂x

[(
y2x + z2x

)
(1− 2ξx)

]
. (2.109)

The starting point for the transverse direction of ĵ is

(
∂2y

∂t2
− [c2L + c2T ]

∂2y

∂x2

)

ĵ = −c2L
∂

∂x

[

yx
√

(1 + ξx)2 + y2x + z2x

]

ĵ. (2.110)

The binomial approximation from the rightmost term in squared brackets follows

as
yx

(1 + ξx)

√

1 +
y2x + z2x
(1 + ξx)2

≈ yx
(1 + ξx)

[

1− 1

2

y2x + z2x
(1 + ξx)2

]

,

and then applying the ’elementary school’ division to the term
1

1 + ξx
:

1− ξx + ξ2x . . .

1 + ξx 1

− 1 + ξx

−ξx

− −ξx − ξ2x

ξ2x

− ξ2x + ξ3x

−ξ3x

· · ·

The result from the division with the remainder term is

1

1 + ξx
= 1− ξx + ξ2x −

ξ3x
1 + ξx

,
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from where the first three terms are taken to rewrite the binomial approximation

as

yx(1− ξx + ξ2x)

[

1− 1

2

y2x + z2x
(1 + ξx)2

]

.

The expression can be simplified further to reveal the terms up to the third order.

Because

(1− ξx + ξ2x) = (1 + ξx)
2 − 3ξx,

the binomial expression simplifies to

yx

[
(
1− ξx + ξ2x

)
− 1

2

(y2x + z2x) [(1 + ξx)
2 − 3ξx]

(1 + ξx)2

]

=

− 1

2

[

−2yx + 2yxξx(1− ξx) + yx(y
2
x + z2x)−

3ξxyx(y
2
x + z2x)

(1 + ξx)2

]

.

The last term of this expression is already of the fourth order, so finally the wave

equation for the transverse direction of ĵ can be written as

∂2y

∂t2
− [c2L + c2T ]

∂2y

∂x2
= −c2L

∂2y

∂x2
+

1

2
c2L

∂

∂x

[
yx(y

2
x + z2x) + 2yxξx(1− ξx)

]
,

and after small simplifications,

∂2y

∂t2
− c2T

∂2y

∂x2
=

1

2
c2L

∂

∂x

[
yx(y

2
x + z2x) + 2yxξx(1− ξx)

]
. (2.111)

The derivation for the equation for the second direction k̂ of transverse vibration

is exactly the same as for ĵ so that

∂2z

∂t2
− c2T

∂2z

∂x2
=

1

2
c2L

∂

∂x

[
zx(y

2
x + z2x) + 2zxξx(1− ξx)

]
. (2.112)

This is the method for deriving the three equations of motion (2.109), (2.111) and

(2.112), which are in agreement with the equations presented in [24, p. 860],

except that because of the different definition of force, the wave propagation

velocity terms c2L and c2T are differently placed. The results given in [24] can be

obtained using the substitution c2L = c2L − c2T . Unfortunately Morse and Ingard

have left a small typo in their resulting equations, namely concerning the term

c2T on the left side of equation (2.111), but maybe this is clear from the context.

If one looks more closely at the left hand sides of all three equations, one notices

that the two transverse equations of y and z have the linear differential equa-

tion with the transverse velocity right in place. This tempts to assume that the

longitudinal equation would have the linear equation on the left side with the

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



2.3 NONLINEAR EQUATIONS OF MOTION 149

longitudinal velocity alone. But there is c2L + c2T instead of c2L. This is the result

from defining the force in the way of equation (2.101), and the conclusion is that

the longitudinal wave velocity is in fact written as

c2L =
EA+ F0

ρA
.

This is not meaningful in practise because EA is always much greater than F0,

but an interesting outcome in any case.

The three nonlinear differential equations are still in differential form, and al-

though these are rough approximations of the general equation of motion, these

equations do not have an analytic solution. On the other hand, these equations

can be used to prove the fact that in the general case each of the directions of

vibration are coupled to each other, and that the longitudinal-transverse mode

coupling is associated with each equation.

As a special case, it is possible to derive an expression for the {xy}-plane motion

by combining the nonlinear equations for transverse and longitudinal vibration

and neglecting equation (2.112) for the {xz}-plane motion. By dividing equation

(2.109) with c2L and assuming that cL = ∞ and approximating that 1 − 2ξx ≈ 1

and that z = 0, the equation

∂2ξ

∂x2
= −1

2

∂

∂x

(
∂y

∂x

)2

is obtained [33]. Obviously this is a very far fetched approximation, but at least

this can be solved analytically to some extent.

To solve this differential equation, it can be directly antidifferentiated twice. The

first direct antidifferentiation is of the form

d

[

∂ξ +
1

2

(
∂y

∂x

)2

dx

]

= d (C1)

and the second one continues as

d



ξ +
1

2

x∫

0

(
∂y

∂z

)2

dz



− xC1 = d (C2) ,

which leads to an equation for the longitudinal waves, where

ξ(x, t) = −1

2

x∫

0

(
∂y

∂z

)2

dz + xC1 + C2.
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The constants C1 and C2 are evaluated using the boundary conditions ξ(0, t) = 0:

ξ(0, t) = 0 = −1

2

0∫

0

(
∂y

∂x

)2

dx+ 0 + C2 ⇒ C2 = 0,

and ξ(L, t) = 0:

ξ(L, t) = 0 = −1

2

L∫

0

(
∂y

∂x

)2

dx+ LC1 + C2 ⇒ C1 =
1

2L

L∫

0

(
∂y

∂x

)2

dx.

The detailed solution satisfying the boundary conditions is therefore

ξ(x, t) = −1

2

x∫

0

(
∂y

∂z

)2

dz +
x

2L

L∫

0

(
∂y

∂x

)2

dx.

The derivative with respect to x is

∂ξ(x, t)

∂x
= −1

2

(
∂y

∂x

)2

+
1

2L

L∫

0

(
∂y

∂x

)2

dx+ 0. (2.113)

Neglecting ζx and assuming that (1 − ξx) ≈ 1 in the equation (2.111) for the

tranverse motion yields

∂2y

∂t2
− c2T

∂2y

∂x2
=

1

2
c2L

∂

∂x

{

∂y

∂x

[(
∂y

∂x

)2

+ 2ξx

]}

. (2.114)

Substitution of the derivative
∂ξ(x, t)

∂x
from equation (2.113) into equation (2.114)

gives

∂2y

∂t2
− c2T

∂2y

∂x2
=

1

2
c2L

∂

∂x







∂y

∂x




1

L

L∫

0

(
∂y

∂x

)2

dx










, (2.115)

and after simplification this results in

∂2y

∂t2
= c2T

∂2y

∂x2
+ c2L




1

2L

L∫

0

(
∂y

∂x

)2

dx




∂2y

∂x2
. (2.116)

If the result derived by Morse and Ingard [24] is resumed with a substitution

c2L = c2L − c2T , this result reveals the coupling of the transverse and longitudinal

modes via the multiplier (c2L − c2T ) and the length modulation during vibration

is included in the integral term. This is quite similar to equation (2.76) used for

deriving the equations to simulate the orbital motion of the nonlinear string in

section 2.2.5 and it is commonly referred to as the Narasimha’s equation, which

was first introduced by Carrier [35].
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2.4 Measuring the string vibrations

The purpose of these measurements is to visualise the waveforms and spectrums

of a plucked guitar string and to compare the outcome of the measurements

to the results obtained from theoretical models. The string is treated in these

measurements as a self-contained vibrating unit, without the nonlinearities that

would arise if the string was connected to a guitar and/or measured through a

nonlinear magnetic pickup. Analysis of the measurement results offers insight

on the properties of the string as a source of sound and tone colour. To be able

to understand how the whole signal chain of electric guitar accessories changes

the sound of the string, it is essential to know the harmonic content of the upper

partials present in the pure tone structure originating from a string.

A typical construction of an electric guitar string is depicted in Figure 2.22, which

shows a sliced model of an overwound string. Light gauge strings do not have the

winding around them, so those can be represented as ’core-only’ strings. The

core wire of a typical steel string is just an uniform piece of metal without any

discontinuities. However, steel strings become impractically stiff if the thickness

of the core is increased over a certain limit. To increase the mass of the string del-

icately without considerably increasing the stiffness of the string, heavier gauges

are constructed by wrapping an extra layer of metal wire around the core. Typ-

ical materials used as the outer winding are nickel plated steel, pure nickel and

stainless steel; sometimes even silver or gold.

Figure 2.22: The inner core and outer winding of a roundwound guitar string

The winding of an electric guitar string can be shaped as flatwound, halfwound

or roundwound. The geometry of a round winding is shown in Figure 2.22;

obviously roundwound strings have a round cross-sectional area. The flat wind-

ing has more like a rectangular cross-sectional shape, and the halfwound strings

have a round inner layer and a flat outer layer. The wound strings are claimed to

have a tendency to enhance the second and third upper partials compared to an

unwound string. However, this detail will not be verified in the measurements
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since the theoretical analysis of wound strings is not covered in the previous sec-

tions. It is essential that the measurement results are somehow comparable to

the theoretical foundations already established in the previous sections.

2.4.1 Properties of the measured string

The measurements were made using a regular unwound steel core string de-

signed for an electric guitar. A nylon string was also used as a reference to study

how the effect of stiffness is seen in the measurement results. Usually string

manufacturers give details only on the string diameter, but some also specify the

tension needed to tighten the string to its nominal frequency within some prede-

fined scale length. The total tension caused by tuned strings is useful information

for all guitarists, since the neck construction of the guitar will bend more as the

tension in the strings increases. The tension specifications also relate directly to

the fundamental frequency of a string.

For example, the steel string chosen for the following experiments was specified

with a diameter of 0.017 inches, which equals 0.43 mm. The manufacturer has

defined this to be used as the B string, and with a nominal scale length of 648

mm, a tension equal to a weight of 11.93 kg is needed to stretch the string to

the note B3 with a frequency of 247 Hz. This can be verified with equation (2.1),

using the density of iron, ρiron ≈ 7870
kg

m3
. A substitution of the known values

leads to the expression

f1 =
1

2 · 0.648 m

√
√
√
√
√
√

9.81
m

s2
· 11.93 kg

7870
kg

m3
· π · 0.0002152 m2

which evaluates to f1 = 246.92 Hz. Nice.

A steel string stretches typically only a few millimetres when it is tightened to

a normal playing tension. Nylon strings are clearly more flexible, and they can

stretch even for a few centimetres under the standard tension.

2.4.2 The measurement setup

In the experiments, the string was mounted on a self-built test bench, which

tries to provide ideal conditions for the end supports of the string by means

of clamping the string between rigid metal plates. The construction of the test

bench was primarily inspired by a measurement setup described by R. M. French

[36, p. 108], where a sturdy piece of wooden log was used as the platform
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for mounting the string. Only the massive wood structure as the measurement

platform has been adopted for this purpose, all the other things are a result of

improvisation to put all the necessary pieces together. The wooden platform was

handcrafted by attaching two 4 by 4 inch stocks on top of each other by glue and

sawing a small ledge for the tuning peg attachment. A barebone sketch of the

measurement platform used is given in Figure 2.23.

10 cm 60 cm 20 cm

a b c d e f

g

a = metal plate as end support

b = leftmost string clamp        

c = string                                 

d = transducer                          

e = rightmost string clamp

f = tuning peg                   

g = sturdy piece of wood   

Figure 2.23: An illustrative sketch of the measurement platform

Primarily only the tuning peg and the vertical plate at the end of the platform

were installed in place and the string was prestretched to some initial tension.

After the string had stabilised to the initial stretch so that no noticeable drift in

the frequency was observed, a pack of metal plates was installed underneath the

string as the rightmost string support. The metal plates were attached together

by glue and afterwards the complete stack of plates was glued to the wooden

platform. The string was then clamped to this support by a top metal plate,

which was tightened by four screws to strongly clamp the string against the set

of metal plates.

A discrete component of an H21B1 photodarlington optical interrupter switch

was used as the actual measuring instrument to transduce the string vibration

to an electric signal. The optoswitch was firstly mounted about three centime-

tres away from the end support. This location was chosen after many trials to

maximise the signal to noise ratio at modest plucking amplitudes of a few mil-

limetres. Measurement systems are never completely noise free, not even optical

systems, but as the intensity of the light is increased, the signal will have less

noise. Unfortunately a high-intensity laser system was not available for these
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low budget, do-it-yourself measurements.

The electrical and physical properties of the optoswitch are covered in detail

within the context of optical pickups (see section 3.3), since it also offers a prac-

tical and simple example of optical pickups used in guitars. As a measurement

device it offers the cheapest and simplest way to measure the movement of the

string with good accuracy. The fundamental ideology in the optical measure-

ment is to place the string in the middle of a beam of light so that when the

string moves, it modulates the light beam that is feeding photoelectric current to

a photoactive component, such as a phototransistor. This ideology is visualised

in Figure 3.38 in section 3.3.1.

In comparison to a basic magnetic pickup, the optoswitch has the advantage of

wide range linearity (see Figure 3.44) and a very small sensor area of 1 mm.

Restricting the measurement location to such a small area gives the possibility

to measure even very high-frequency components accurately. In addition, the

optoswitch directly measures the displacement of the string, as opposed to the

magnetic pickup, which measures the velocity of the string. The trace of the

string displacement obtained with the optical transducer is easily transformed

to show the exact waveform and spectrum depicting the motion and harmonic

content of a guitar string.

In the practical measurement setup the optoswitch needed an external voltage

supply of 5 V, which was regulated from a basic 9 V battery as shown in Figure

2.24. The resistors RD and RE were chosen to keep the current in the LED circuit

9V C11000 uF

+ 5 V

C21000 uF

1

RD150 Ω

3

RE220 Ω

2 4 Vout

7805
H21B1

Figure 2.24: A wiring schematic for the optoswitch

sufficiently large, and allow almost a maximum voltage swing (0 V – 4.2 V) at the

output [37]. The phototransistor depicted in Figure 2.24 is actually a darlington

pair, but for simplicity it is drawn here as a single transistor.

The output from this circuit was simultaneously measured by an oscilloscope
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and a basic built-in computer sound card. The oscilloscope provided a sampling

frequency of 100 kHz and the PC sound card was able to record with a 96 kHz

sampling rate. For a vibration frequency of about 200 Hz, these sampling rates

will give approximately 450 discrete measurement points per period for further

analysis. Surprisingly the sound card offered a better voltage measurement res-

olution with its 16-bit DA conversion. The oscilloscope had a far more weaker

resolution, which is seen as unnecessary fluctuation in the measurement results.

A first set of measurements was executed with this setup, where only the right

side of the string was clamped and the optoswitch was at a three centimetre

distance from the clamped support. In this setup the effective length of the

string was 700 mm. A sharp metal needle was used as a plectrum to pluck the

string, but as a reference, plastic picks of different widths were used as well.

After finishing the first set of measurements, the left string clamp was installed,

reducing the effective length to 600 mm, and then a second set of measurements

was done. Later the optoswitch was also moved closer to the support to get better

measurements from the higher upper partials.

2.4.3 Error limit calculations

The purpose of error analysis is to reflect the uncertainty of the measured val-

ues compared to the expected values provided by theoretical equations. Instead

of comparing the results obtained by measurements to the exact theoretical val-

ues, it is better to determine a range of theoretical values that are possible to

obtain with the limited accuracy of the measured values. The error in the mea-

sured values propagates to results that are calculated using the measured values

as variables. Error analysis estimates the total error in the final result due to

different inaccuracies in the associated variables. [38]

In the measurements of the vibrating string, the primary interest is to find out

the amplitudes of the harmonic frequency components and to show their relative

magnitudes with respect to the magnitude of the fundamental frequency. The-

oretically this harmonic spectrum is calculated from equation (2.34), and with

the weight of the transducer added, the theoretical values for relative spectral

magnitudes are calculated from equation

An(p, P, L) =

sin
(nπp

L

)

sin

(
nπP

L

)

n2 sin
(πp

L

) , (2.117)

from where the relative amplitudes are obtained by dividing the amplitude of
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all the frequency components with the amplitude of the fundamental frequency.

The weighting created by the location of the transducer is explained in detail in

section 3.1.

The variables in equation (2.117) that will suffer from the limited accuracy of

measurement are the plucking location p, the pickup location P and the length

of the string L. If the position measurement is done using a device that has tick

marks at every millimetre (a tape measure or a ruler, for example), the error

in the measurement can be taken as ±1 mm. In this specific case this level of

uncertainty is used for all measured values of p, P and L.

When defining the relative magnitudes of the spectrum coefficients with equation

(2.117) using these measured values, the uncertainty from all measured values

will propagate to the final result. Assuming that the relative error in the mea-

sured values is small, the normal procedure is to calculate the total differential of

An(p, P, L) with respect to all measured variables. That will lead to the following

equations:

∂An

∂p
= |An|

nπ

L

cos
(nπp

L

)

sin
(nπp

L

)

∂An

∂P
= |An|

nπ

L

cos

(
nπP

L

)

sin

(
nπP

L

)

∂An

∂L
= |An|

nπ

L2







p cos
(nπp

L

)

sin
(nπp

L

) +

P cos

(
nπP

L

)

sin

(
nπP

L

)






.

By writing the equations in this form suggests that the problem with this ap-

proach is the division by zero at the node points of certain harmonic frequencies.

This is not the actual problem because the sines will disappear from the denom-

inator if the term |An| is written open. However, there is still a problem with

the node locations. The cosine term will be zero at the node points, so the error

would then be zero. Obviously these are not suitable formulae for error analysis.

One approach to get around the node problem is to rewrite the derivative of sine
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in the form
d sin(x0)

dx
=

sin(x0 + dx)− sin(x0)

dx
,

so that even if the sine or the cosine at x0 would be zero, the difference quotient

will have a value other than zero. Defining the errors this way would lead to

expressions such as

∂An =

[

sin

(
nπ(p+ ∂p)

L

)

− sin
(nπp

L

)]

sin

(
nπP

L

)

n2 sin
(πp

L

) dp,

as an example of the error term with respect to p. After the error terms have

been calculated for each variable p, P and L, the total error can be obtained

by summing the three terms quadratically as the standard procedure of error

propagation for independent errors requires.

The most crude way to determine the error limits is to just use the error mag-

nitudes of the measured quantities to find a maximum and minimum of the ex-

pression (2.117) for An. The main difference compared to the approach explained

above is that the error terms are not summed quadratically, so that this proce-

dure will produce slightly larger error limits. It was seen as suitable to use the

crude method for the following analysis, because the error limits would become

adequately small in that way as well.

2.4.4 Measurement results - Amplitude spectrum

The first measurements were done using only the right string clamp and the other

end was resting on top of the end support plate. The optoswitch was attached

with screws on top of the string so that the direction of vibration was forced to

vertical motion. This arrangement was easier to accomplish with this measure-

ment platform. The Earth’s gravity clearly affects the vibration unequally in this

way, but just keep this in mind, since within this experiment no comparison will

be done to the horizontal vibrations.

Additionally, this setup with only one end clamped forced the effective length of

the string to 700 ± 1 mm, and for this length the string was initially tuned as

close as possible to 200 Hz. This is because the Discrete Fourier analysis requires

the frequency ratio of the sampling frequency and the fundamental to be an

exact integer. However, in practical measurements this requirement is almost

impossible to fulfil.

The first object of interest was to see how well the measured waveforms correlate
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with theoretical expectations. If the waveforms are not in agreement with the

theoretical expectations, then it is of no use to proceed to calculate the spectrum

representations. Figure 2.25 shows an oscilloscope trace of the first two periods

from a vertical pluck with a displacement of about 1 mm applied at the middle of

the string. The dashed waveform shows the ideal theoretical waveform for direct

comparison purposes.
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Figure 2.25: The first two periods of string vibration plucked at the centre

The waveforms are quite similar, but what was seen in all measured waveforms

was the peculiar roundness at uneven corners of the almost squared wave. Later

on, this rounding effect was investigated more to find out the reason that is

causing it. At first thought it was assumed to relate to the stiffness of the steel

string, but measurements with a nylon string indicated that the stiffness was not

the primary explanation for this effect, although clearly the stiffness aspect plays

a small role here as well.

The main reason for the roundness was found to be the nonideality of the pluck-

ing object. The sharp metal needle chosen as the plectrum to pluck the strings

is as close as one can get to an ideally narrow plucking device, but apparently

it was not a sharp enough needle. Another important thing to consider here is

the force used for plucking, which is related to the stiffness of the string. For

plucks with small displacement amplitudes of approximately 1− 2 mm, the force

on the string was found to be too small to make the initial shape of the string
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to resemble the theoretical triangular shape. Eventually the best experimental

effort was to still use the sharp metal needle for plucking, but increase the ini-

tial displacement to somewhere around 5 ± 1 mm or more, and this resulted in

the waveform shown in Figure 2.26. This figure compares the best experimental

result to a pluck with a plastic plectrum and the theoretical expectation curve.
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Figure 2.26: Investigations on the roundness effect

The softer and wider plastic plectrum clearly caused the roundness to increase.

This is also clear from the theoretical point of view, since at the moment of pluck-

ing a wider plectrum covers more node points of high-frequency components

than a sharp metal needle. Clearly there is still the effect of stiffness present be-

cause the waveform is not totally balanced, but it has some ripple at the edges.

This would suggest that the frequency components are not all exact integer mul-

tiples of the fundamental frequency.

To get an overall view of how the waveform depends on a certain plucking posi-

tion, the waveforms measured from plucks in different positions can be drawn as

a function of plucking distance starting from the leftmost end of the string. Fig-

ure 2.27 presents the measured results along with the theoretical expectations

on the shapes of the waveforms. Clearly the duty cycle between the high and

low states of the square wave changes as the plucking position advances but the

square-like shape remains the same. Near the left end support the wave is mostly

in the high state and takes a short dip to the low state. As the plucks proceed
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Figure 2.27: Waveforms as a function of the plucking position

towards the right end support, the low state becomes more and more dominant.

The symmetry with respect to the mid point is easy to notice.

From the data of several measured plucks the best ones were chosen for further

analysis to determine the spectrum of the waveforms. The most successful plucks

were measured when both ends of the string were tightly clamped between the

metal supports. In this setup the effective length of the string was 600±1 mm, and

with this length the fundamental frequency was about 230 ± 1 Hz. Additionally,

to get a large number of harmonics measured, the optoswitch was mounted at

8± 1 mm from the leftmost end support of the string.

The spectrums were calculated by applying the Discrete Fourier Transform to the

very first period of vibration because the external unideal factors such as the air

resistance will affect the propagation of the wave in the string extremely fast.

Before going through the results of the spectral analysis, a good question is to ask

how it is possible that the DFT calculated from the square-like signal is expected

to give exactly the same amplitude components as the analytical formula, which

is derived from a triangular shaped string. The equivalency between the trian-

gular and squared forms can be proven semi-analytically by creating the static

triangular string model from the analytical Fourier series and using the time de-

pendent equation (2.33) to numerically create the trajectory of the string during
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one full period of vibration. A sample can be provided to do this in Octave:

% number of components from Fourier’s series

n = 1:1000;

% length of the string (between supports) in centimeters

L = 60;

% plucking position measured as a fraction of the string length

p = L/6;

% plucking amplitude in centimeters

a = 1;

% pickup position with respect to the length

x = 2;

% time goes through one full period

t = L/2:0.01:2*L + L/2;

% create the triangle from Fourier’s series

% and calculate for duration of t observing from constant x

FACTOR = 2*a*(L/p + L/(L-p))/pi^2;

Z1 = sin(n’*pi*(x-t)/L)’;

Z2 = sin(n’*pi*(x+t)/L)’;

Z = (sin(n*pi*p/L)./n.^2)’;

K = 0.5*FACTOR*(Z1+Z2)*Z;

% take FFT from the square-like wave, normalise amplitude

Y = 2*abs( fft(K,(length(K)-1)) )/(length(K)-1);

% reference amplitudes from theoretical triangle formula

X = FACTOR*Z;

% divider term to cancel the measurement location weighting

DIV = (sin((1:6)*pi*x/L))’;

% two columns side by side for easy comparison for similarity

BUF = [Y(2:7)./DIV X(1:6)]

The result in variable K is now the trajectory of the string within one full period,

and the amount of samples is several thousands. From these samples one can

calculate the DFT and the actual magnitude of a spectrum bin is obtained when

the weight function of the pickup position, as indicated in section 3.1, is divided

away. This example will result in numerical values given in Table 2.1.

The results are practically identical. The only differences come from the numer-

ical accuracy used in the DFT calculation, where rounding errors are likely to

occur, but even this is so small that the differences are beyond the 16th deci-

mal. This result proves that in an ideal situation the triangular and square-like

waveforms produce amplitude components of the same magnitude. The only

difference is that the triangular form generates some components with a nega-

tive amplitude, which justifies the use of the absolute values in the preceeding

equations. This proof gives confidence to assume that measurements on an ideal

string should give results that can be directly compared to the theoretical spec-

trum.
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Table 2.1: Amplitude components from two different shapes

n square triangle

f1 0.729512522224832 0.729512522224832

f2 0.315888188312782 0.315888188312782

f3 0.162113893827740 0.162113893827740

f4 0.078972047078195 0.078972047078195

f5 0.029180500888993 0.029180500888993

f6 1.9353× 10−17 2.2961× 10−17

To get a good view of how accurately the measurements agree with a large set

of harmonics, it is best to pluck the string close to the end support. This pluck-

ing position will excite all harmonic frequencies as equally as possible. As the

theoretical calculations have already indicated, a pluck close to the middle will

result in a quite nondiverse spectrum with all the upper partials very close to

zero amplitude.

Figure 2.28 shows the spectrum that resulted from a pluck at 20±1 mm distance

from the rightmost end support. In this measurement the optoswitch transducer

was mounted at 8 ± 1 mm from the leftmost end support of the string. This

location of the transducer is obligatory to get all the harmonics measured without

hitting any node points. When drawn on a linear axis, the results seem to be a

good match to the theoretically calculated values, where the error limits have

been calculated with the uncertainties indicated above along with the plucking

position and the transducer location. Some of the first spectral bins fit nicely

inside the error limits, although the general behaviour is that the amplitudes of

the upper partials follow the lower error limit curve. It is to be assumed that

there have been some issues resulting from the measurement setup that affect all

the measurements this way.

The next step is to see how well the measurements identify that the pluck has

been executed on a node of some upper partial. To compare to the previous

theoretical spectrums, the string was plucked at the node of the 6th upper partial,

which should result in a zero amplitude spectral bin at n = 6 and all its integer

multiples.

The plot in Figure 2.29 has been prepared using a logarithmic axis in the y-
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Figure 2.28: A steel string plucked from
L
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Figure 2.29: A steel string plucked from
L

6

coordinate direction because this will show more accurately the small differences

in the very low-amplitude spectral bins. The first and second nodes hit the 6th

and 12th upper partials quite accurately, but the third node affects the 19th upper

partial more instead of the expected 18th. No evidence was found on the root
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cause for this frequency ’glide’ to happen, as it also is in conflict with the stiffness-

related theory of the raised frequencies of the higher upper partials. Most likely

the plucking location was measured with a small bias towards the 19th node,

which would still generate the 6th and 12th nodes reasonably accurately but

would show up as inconsistency at the higher upper partials where the distances

separating the nodes are small.

It turned out to be a difficult task to get a successful pluck at the middle of the

string. Firstly there is more uncertainty in measuring the exact mid-point of the

string and secondly it seemed that the actual pluck execution had to be done

purely. This means that the initial displacement needed to be relatively large

so that the shape of the string was close as possible to the ideal triangle. The

stiffness of the string caused it to resist being molded towards the ideal triangle

shape on the plucks with small amplitude displacement. For this special case the

difference between horizontal and vertical plucks was examined. It seemed that

horizontally directed plucks provided slightly better results than the vertically

directed plucks but the difference was quite minimal. This observed difference

is most likely due to the uneven effect of the gravitational force in the vertically

directed motion.

Eventually, after several attempts, Figures 2.30 and 2.31 show the best effort

from the measurement sessions.
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Figure 2.30: A steel string plucked from
L

2
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The linear y-axis plot in Figure 2.30 does not reveal the small deviations from

the theoretical values. These are only noticed on the logarithmic plot. According

to the logarithmic plot, the first ten or so upper partials are quite nicely in place,

but then it seems that the upper partials are shifted in frequency so that they are

no longer integer multiples of the fundamental frequency and therefore the har-

monic Fourier analysis results in smaller amplitudes for the higher frequencies.
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Figure 2.31: A steel string plucked from
L

2
, a logarithmic scale plot

A nylon string provided a great counterpart to the steel string to investigate the

true effects of the stiffness of the string. If the same frequency shifts are noticed in

the nylon string, then it is not possible to completely blame the stiffness for that

observation. Figure 2.32 summarises the results nicely. A similar frequency shift

is noticed as with the steel string and the resulting spectrum is similar compared

to the steel string. Maybe the only subtle difference is that the node points are

more distinctly closer to actually being zero, and the very high upper partials still

create the expected form of the logarithmic spectrum.

According to these results, it seems that the nylon string would provide spec-

trums that are closer to the ideal string than the steel string. Unfortunately this

was not the case when analysing the nylon string spectrum for the middle-pluck

waveforms. In that case the nylon string did not provide any better results com-

pared to the steel string.
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Figure 2.32: A nylon string plucked from
L

12

2.4.5 Measurement results - Decay of upper partials

The decay times of different frequency components were analysed from the mea-

surement data obtained from plucking the string near the end support. In this

situation the high-frequency components are initially the strongest compared to

the fundamental frequency and it is possible to follow the relative decay times of

the high-frequency components compared to the decay time of the fundamental

frequency.

The data used for analysis was recorded from the same pluck-fest sessions as

was the data for the spectrum analysis part, but instead of using the oscilloscope,

longer data storage was possible only with the computer sound card. Since the

focus is on the relative decay of the frequency components, the absolute accuracy

of the measurement device is not that significant.

The analysis method was to write a computer program that reads .wav files and

locates all such zero-crossings that are constraining one full period of vibration

within. This was done by analysing an average amount of data points within

one period and allowing the amount of data points to vary approximately by

20 data points around the preanalysed amount of data points within one full

period. Another constraint was that the periodicity should continue to the three

following zero-crossings, so that three sequences of data points having a period
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approximately equal to the preanalysed value were located. This is not a fool-

proof method to discard false periods, but clearly in the majority of cases the

method works fine.

When one period of data was isolated from the .wav file, the program simultane-

ously calculated the Discrete Fourier Transform to find out the amplitudes of the

first 30 upper partials. The amplitude values and the time value of the located

period were written to a text file and the program proceeded to locate the next

period in the .wav file. This way a set of time values related to a certain set of

amplitude values was obtained.

The decay times are expected to follow the exponential law, so the easiest method

to linearise the decay curves is to take a natural logarithm of the amplitude values

before plotting. Then the decay time τ can be obtained by fitting a line to the

linearised data and calculating the slope k of the fitted line. This follows from

the basic equation for the line

y1 − y0 = k(t1 − t0),

where a natural logarithm is taken from the y-values as

ln y1 − ln y0 = k(t1 − t0).

After solving for y1 this leads to

y1 = y0e
k(t1−t0),

so that when following the general laws of decay, k =
1

τ
.

Firstly, it is better to visualise the decay curves to show a bigger picture of how

the different frequency components behave in steel and nylon strings. Figure

2.33 shows the decay curves for the steel string having a fundamental frequency

of about 230 Hz. The string was plucked at distance
L

30
and the optical pickup

was located 8 mm from the end support of the string. All the 29 frequency com-

ponents obtained from analysis are included in the figure.

Although Figure 2.33 may have more artistic than scientific value, it indicates

that the 10 first upper partials are relatively stable and the decay proceeds at a

constant rate. The higher frequency components (< 2000 Hz) behave more and

more chaotically and they do not form any straight line, but looking closely at

the figure, the decay trend is still clearly visible for all frequency components.
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Figure 2.33: Decay of amplitude components in a steel string

As one might easily guess, the nylon string behaves a bit differently from the

steel string. In Figure 2.34 the eye focuses on the periodical alternations in the

amplitude decay curves. To acquire this set of measurement data, the nylon

string with a fundamental frequency of 163 Hz was plucked at
L

12
. Therefore, it

is not possible to directly compare this figure to the one representing the decays

of the steel string.

The fundamental wave seems to decay at an extremely steady pace in the nylon

string, but all the upper partials have a tendency to occasionally decay almost to

a minimum, and then gain the amplitude back after a short while. This might be

a sign of energy transfer between the frequency components, or then it is just that

the higher harmonics are travelling faster in the string (dispersion), and therefore

they are not moving within the full period determined by the fundamental wave.

Compared to the steel string, the amplitudes of the higher harmonics are more

stable and the changes observed in the decay curves are predictable from the

earlier data points.

One explanation for the bumpiness of the nylon string decay curves might come

from the measurement setup itself. The nylon string was not properly attached

from its other free end because there was no similar metal ball at the end as there

was on the steel string. Therefore, the nylon string was fixed from the other end

only by the clamping mechanism. This affected the string so that it could not be
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Figure 2.34: Decay of amplitude components in a nylon string

stretched to a normal playing tension, and eventually 160 Hz was seen to be a

good compromise at the time of measurement. Both of these reasons could lead

to a loose fixation of the string, which could allow the string to move more in

the vertical direction, enabling the coupling of the horizontal and vertical modes

of vibration. But this is just a guess, because there are no other data available to

confirm these suspicions.

The actual goal of these measurements was to prove the predictions of the the-

ory that the higher frequencies decay faster than the lower frequencies. This was

already visually noted from the two figures above but more proofs can be pro-

vided. After the decay times have been determined by doing a simple line fit to

the data and processing k as indicated earlier, the obtained time constants τ can

be plotted along a frequency axis. This plot has been prepared in Figure 2.35.

The plot has been drawn to a log-log plot because there the differences can be

seen more clearly. One can also imagine connecting the lower frequency data

points with a line of some slope kl and the higher frequency data points with

another line having some deeper slope kh. These lines, however, are not fitted to

the figure because there is no clear indication of some specific corner frequency

that would divide the lower and higher frequencies apart.

If some line fitting were to be done to the two data series depicted in Figure 2.35,
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Figure 2.35: Decay time constant versus frequency

this would require taking logarithms from both y’-values and x’-values, namely

ln τ1 − ln τ0 = k(ln f1 − ln f0).

After solving for τ1, this leads to

τ1 = τ0

(
f1
f0

)k

so that the slope constant k now defines the exponential behaviour of the ratio

of the two consecutive frequencies.

The reason for the two humps in the data series of the nylon string can be easily

explained with the fact that when plucking at
L

12
, the nodes are the upper partials

12 and 24. Around these node points the amplitudes are generally very low and

they are disappearing into the noise. For this reason no clear continuation of the

data series is obtained in the vicinity of the node points.

2.4.6 Measurement results - Pitch glide

Some data from a set of earlier measurements has been reused to show how the

vibration frequency changes as the initial plucking displacement grows larger.

These measurements are intended to verify the validity of the theoretical for-

mulae derived in section 2.2.1. The main focus is on the results obtained from
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equation (2.49), which gives the relative frequency increase as a function of the

sum of the amplitude components An.

The ∆L in equation (2.49) refers to the length that the string is initially stretched

to under the normal playing tension due to Fx, as shown in Figure 2.1. To be

able to compare the experimental and theoretical results, ∆L had to be measured

when the end point of the string was stretched from its effective resting length

L to the total length of L + ∆L. In this experiment, the measured value for the

effective length was (845± 1) mm and ∆L was (2± 1) mm for a steel string and

(46±2) mm for a nylon gut string. The nylon string had a silverplated overwound

that increased the mass and also the stiffness of the string a tiny amount.

The displacement coefficient a in equation (2.34) refers directly to the displace-

ment of the peak of the initial triangular form of the string before releasing it

into motion. This coefficient is connected to the spectral amplitude coefficients

An in equation (2.46), which describes the length increase of the string due to

the initial plucking displacement.

It is possible to derive some reasonable error limits for the measurement results

on the displacement dependent frequency from the theoretical equations using

the standard method of error propagation [38, p. 75]. For the uncertainty in the

measured value of ∆L, one has the error formula
∣
∣
∣
∣

δf ′
n

δ∆L

∣
∣
∣
∣
= f ′

n

δL

2∆L2

(

1 +
δL

∆L

) .

The derivation of the error formula for the displacement variable a requires the

use of the chain rule, since the variable is indirectly included in the equation for

δL, so that ∣
∣
∣
∣

δf ′
n

δa

∣
∣
∣
∣
=

∣
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δf ′
n

δδL
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∣
∣
∣
∣
= f ′
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(
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where
dδL

da
=

aL

π2

(
1

p
+

1

L− p

)2∑

n

1

n2
sin2

(nπp

L

)

.

Another factor of uncertainty comes from the way how the vibration frequency

is defined from the number of data samples within one fundamental period. If

the vibration frequency is directly calculated as

f(N) =
fs
N
,
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where N is the number of samples inside one fundamental period bounded by

zero-crossings at each side, the error in the calculated frequency is then

|df(N)| = |f(N + dN)− f(N)| ≈
∣
∣
∣
∣

df(N)

dN

∣
∣
∣
∣
dN =

fs
N2

.

This uncertainty is mostly overcome by using linear interpolation at the zero-

crossing boundaries. The linear interpolation is used in the following data analy-

sis, and therefore the error term arising from the discrete nature of the measure-

ment process can be neglected.

To perform the measurements, a regular computer sound card was used to record

the output signal obtained from the optoswitch, which was used to measure the

motion of the string. The resulting waveforms were saved as .wav audio files

for later analysis. The frequency corresponding to each vibration amplitude was

determined as an average value over the first ten periods of vibration. The initial

vibration periods are assumed to have approximately the same amplitude as was

measured for the plucking displacement when releasing the string to vibrate.

The measurement results correlate with the theoretical predictions as indicated

by Figures 2.36 – 2.38.
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Figure 2.36: Amplitude dependent frequency changes in the measured steel string

The frequency increases measured on the steel string fit quite nicely inside the

error limits. The error limits do not have a constant deviation between them

because both components of the error propagation formula contribute relatively
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equally to the limits. As the amplitude grows, the more it affects the error limits

as well. The measured error in the amplitude term was chosen quite large in this

case, but despite that, the trend from the theoretical values follows the measured

results.

As for the nylon string, at first it seems that the measured values are far from

the theoretical calculations. There are two possible outcomes because of this ob-

servation. Either the theoretical formula for the frequency change does not hold

in practical situations, or there might have been a mistake when determining

the initial stretch of the nylon string. The error term arising from measuring the

initial stretch is clearly a more dominant term that defines the error limits in this

case.
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Figure 2.37: Amplitude dependent frequency changes in the measured nylon string

To verify this, the value for the initial stretch used in the calculations is modi-

fied to see if there is a value that theoretically gives a behaviour similar to the

measurements. The value for the corresponding initial stretch was found to be

16 mm, which produces the plot in Figure 2.38. This stretch is considerably less

than the value actually measured, but since the nylon string is so flexible, it is

difficult to find the difference between the exact resting length and the length

under initial tension. On the basis of this reasoning, it can be assumed that the

equations derived in section 2.2.1 are valid and they describe quite accurately

the real change in the vibration frequency with respect to a certain plucking am-
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plitude.
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Figure 2.38: Replotted frequency changes in the measured nylon string

The practical significance of these measurements is to indicate the actual fre-

quency shifts occurring with different vibration amplitudes. From the measure-

ments it is easy to draw the conclusion that the nylon strings do not notably

change their frequency with modest plucking amplitudes. The steel strings, how-

ever, are quite sensitive to the plucking amplitude and in some cases the change

in the vibration frequency can be noticed even by ear. This unideality of the

steel strings relates directly to the difficulties in tuning the strings. Basically the

correct way to tune the strings would be to use very small plucking amplitudes,

but then again aggressive playing would result in intonation problems. However,

the exponential decay reduces the initial vibration amplitude very fast so that

after a few tenths of a millisecond the amplitude has attenuated considerably.

From this point of view, despite any given initial displacement amplitude, the

string vibrates most of the time in the small amplitude range where the relative

frequency changes are negligible.
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Guitar pickups

Guitar pickups sense the motion of the strings and transduce that mechanical mo-

tion into an electrical signal. There are different types of pickups available; the

most common in the electric guitar being the electromagnetic transducer. Optical

transducers are also sometimes applied especially in bass guitars, and to make

acoustic guitars electric, contact microphones such as piezoelectric pickups are

used. The transfer characteristics vary significantly between displacement sensi-

tive and velocity sensitive pickups. But what is actually meant by displacement

and velocity type of transducers anyway? The following sections will clarify this

and many other interesting details of guitar pickups.

Before proceeding any further to identify properties of different pickup types,

one common factor for all pickups needs to be covered.

3.1 The effect of pickup positioning

Different pickup types have naturally different transfer characteristics as far as

the frequency response in the electrical domain is concerned. However, regard-

less of the pickup type, the pickup placement relative to the guitar string has a

significant effect on the reproduction of the string’s tone colour. The influence

of the placement is the same for all pickup types, therefore it can be treated as a

common topic.

If a pickup is placed at a location P along the length of the string, the pickup

senses the vibration of the string only in that specific position. Remembering

the different modes of vibration and the standing wave phenomenon of the ideal

string, the harmonic modes of vibration have different peak-to-peak amplitudes

depending on the point of observation.
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Figure 3.1: Pickup position at P =
L

5

In another words, the pickup acts as a weight function for the amplitude spec-

trum components of string vibration. As an example, a pickup placed close to

the bridge of the guitar will sense a peak-to-peak displacement of only a few per-

cent from the maximum deflection of the fundamental frequency measured at

the middle of the string. Figure 3.1 visualises the significance of placing a pickup

to a certain location relative to the length of the string.

As an example of the weight function properties of a pickup, equation (2.34)

giving the amplitudes of the upper partials of a plucked string with a pickup

positioned at point P along the string would read

An(P ) = An sin

(
nπP

L

)

=
2a

n2π2

(
L

p
+

L

L− p

)

sin
(nπp

L

)

sin

(
nπP

L

)

, (3.1)

where An(P ) is considered to be a function of the pickup position P . The right-

most term can have values in the range from 0 to 1, giving the relative amplitude

of a sinusoid with a harmonic index n at location P relative to the length of the

string. This term will scale the amplitudes of all upper partials with a fraction of

their maximum amplitude at
P

L
.

Figure 3.2 gives a visual example of how much the pickup position and type

actually modify the natural harmonic content of an ideal string. The theoretical

upper partial structures in Figure 3.2 have been evaluated using equation (3.1).

Comparing to the spectrum of an ideal string, the theoretical amplitude spectrum
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is shown for an optical pickup and a magnetic pickup, which are both placed at
L

15
and the pluck is executed at the same location

L

15
.
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Figure 3.2: Pickup position at P =
L

15

The analysis above is based on the assumption that the pickup is an infinitesimal

point at some distinct position P . Similarly as the finite width δ of a plectrum

or a finger introduces a cut-off for upper partials above
L

δ
, the width of the

pickup creates the same effect on its behalf. Furthermore, if the pickup senses

the motion of the string from relatively wide area, it is not exactly comparable to

the situation where the pickup could be assigned a single-valued coordinate of

position as if it was some analytic function. Although these facts are not covered

in the included analytic treatment, one should bear these unidealities in mind

when observing the results of theoretical derivation and practical measurements.

3.2 Magnetic pickups

The key element to make the guitar electric was the invention of the magnetic

pickup. The first models were patented already in the 1930’s, but the golden

era of magnetic pickups started in the late 1950’s. Nowadays there are dozens

of companies that design and manufacture magnetic pickups for electric guitars.

Some of the most well-known manufacturers have been able to earn a reputation

of magnetic witch doctors because of unrevealed secrets of magnetic pickups. Are

these truly secrets, or is it just the basic laws of nature that give that magic touch?
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3.2.1 The basic construction and function of a magnetic pickup

Figure 3.3 shows the elementary components included in the construction of a

magnetic pickup. The central components are the magnetic polepieces and the

coil winding around the magnets. The magnetic polepieces can be separately

positioned for each string as depicted in the figure, or there can be just one large

bar magnet to cover the area beneath all strings. To keep the whole ensemble

together, the magnets and the winding are packed between the top and bottom

plates. Usually the coil wire is wound around a plastic bobbin, which has place-

holders for the magnets inside.

cylindrical magnets

coil windings

top plate

bottom plate

Figure 3.3: The standard construction of a magnetic pickup

The magnetic pickup is a transducer that generates an electric signal from the

mechanical motion of the string. As the strings vibrate within the magnetic field

of the pickup magnets, the flux of the magnetic field through the coil changes.

The changing flux induces an electromotive force to the coil, which causes a cur-

rent to flow in the coil. This current is an electric representation of the movement

of the strings.

In the following sections the parts of the pickup are given more in-depth analysis,

starting from the static magnetic field generated by the permanent cylindrical

magnets, and ending up to the induced current in the coil. This analysis presents

the properties of the magnetic pickup as a signal source. Afterwards the magnetic

pickup is modelled as a normal inductor as a part of an electric circuit.
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3.2.2 The magnetic field of a pickup magnet

Guitar pickups are normally built around permanent magnets, such as alnico

(aluminum, nickel, cobalt) or ceramic magnets. Neodymium and samarium

cobalt are also sometimes used as basis materials for guitar pickup magnets.

The development trend of pickup magnets started from alnico magnets and has

eventually evolved towards ceramic materials, although alnico magnets are still

most commonly used. Magnets assembled from these materials create a very

strong magnetic field, which extends relatively far away from the surface of the

magnet. The stronger the magnetic field, the more sensitive the pickup is to

sense the movement of a vibrating string. [39, p. 30]

Over the years, several manufacturers have varied the performance of magnetic

pickups by modifying the size, shape and material of the magnetic core of the

pickup. All these modifications alter the direction and strength of the mag-

netic field around the pickup, which has a noticeable effect on the ’sound’ of

the pickup. The range of used magnet shapes have reached from bulky horse-

shoe magnets to compact plate magnets and elegant cylindrical bar magnets. A

combination of these magnet types is sometimes used to increase the strength

of the magnetic field around the pickup. The simplest structure of a magnetic

pickup from the point of view of analysis is the one shown in Figure 3.3, which

in basic principles fortunately represents a major part of commercial magnetic

pickups.

The magnetic field of a regular bar magnet oriented according to the north (N)

and south (S) poles is visualised in Figure 3.4. The magnetic field spreads around

the magnet and magnetic field lines are used to describe the area where the

influence of the magnetic field is reaching. For cylindrical-shaped magnets, the

side view of the field is the same; the extension to the third dimension would

only reveal the same pattern going around the vertical axis of the magnet.

The magnetic field ~B (also referred to as magnetic flux density) is a vector quan-

tity and it is measured in the unit of tesla [T], named after the Serbian physicist

Nicolai Tesla. A typical numerical value for ~B of an average pickup bar magnet

can be assumed to be around 0.1 T = 1000 gauss, measured within 1 cm’s distance

from the top surface of the magnet [40]. The magnitude
∣
∣
∣ ~B
∣
∣
∣ depends somewhat

exponentially on the distance measured from the surface of the magnet.

A relatively simple mathematical model for the magnetic field of cylindrical bar
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N

S

~B

Figure 3.4: Magnetic field lines of a (cylindrical) bar magnet

magnets has been suggested and proven to be relatively accurate in practical

experiments of theoretical research [40]. This model states that the main con-

tribution to the changing magnetic field through the coil windings of the pickup

comes from the changes of the magnetic field component Bz, which is oriented

towards the z-coordinate direction. This statement is based on the idea of mag-

netic flux through a closed surface, shown in Figure 3.5.

dx
dy

d~S

x

z

y

dS = dx dy

~B

Φ =

∫

S

~B • d~S

Figure 3.5: Magnetic flux Φ through a closed surface with area S
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The total magnetic flux through any given surface is mathematically defined as

Φ =

∫

S

~B • d~S.

The differential surface element vector d~S has a different form depending on the

coordinates used. In the basic Cartesian coordinates the surface element vector

is defined to be

d~S =

∣
∣
∣
∣
∣
∣
∣
∣

î ĵ k̂

dx 0 0

0 dy 0

∣
∣
∣
∣
∣
∣
∣
∣

,

which equals dx dy k̂. This means that the magnitude of the surface element

equals the area of a rectangle with sides dx and dy and the direction of d~S is per-

pendicular to the plane formed by linearisations dx and dy. For other coordinate

systems, this basic element can be transformed via the Jacobian matrix.

The derivation of the model for the magnetic field of a cylindrical magnet begins

from the equation

~B = B0
1

r2
r̂ (3.2)

for a magnetic induction field due to a magnetic point charge. The idea of a point

charge has been adopted from the definition of electric charge. The fundamental

theory of electromagnetism does not directly validate the existence of a magnetic

monopole, which this model refers to with the idea of a point charge. In equation

(3.2),

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2, (3.3)

and r̂ is a unit vector of r to give a direction to the magnitude B0 of the magnetic

field ~B. The unit vector is written as

r̂ =
~r

|~r| =
(x− x0)̂i+ (y − y0)ĵ + (z − z0)k̂√

~r • ~r

=
(x− x0)̂i+ (y − y0)ĵ + (z − z0)k̂
√

(x− x0)2 + (y − y0)2 + (z − z0)2
,

where the denominator simplifies to r according to (3.3). The vector component

to the z-coordinate direction is therefore

Bz = B0
z − z0
r3

.

To expand this ideology from a point charge to a charged surface which would

model the top plane of the cylindrical magnet, the infinitesimal areas of the

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



182 GUITAR PICKUPS

surface constructing of a group of point charges need to be summed up via an

integral. The distribution of the point charges is handled with a function of

magnetic charge density σ, which can be considered to be constant for the sake

of simplicity. Assuming σ to be constant equals a uniform charge distribution

throughout the whole surface, which is a quite realistic assumption.

To form a general model of the situation, the top surface plane of the theoretical

cylindrical magnet needs to be attached to a decent coordinate system. The

system shown in Figure 3.6 gives an idea of the chosen coordination setup. The

dx
dy

~r

x

z

y

ρ(x0, y0, z0)

(x′, y′, z′)

φ

dS = dx dy

R

Figure 3.6: Magnetic field vector from a magnetised surface

centre of the surface plane in Figure 3.6 is identified with coordinates (x0, y0, z0)

and an arbitrary point (x′, y′, z′) in space experiences the field arising from the

magnetised surface.

In Cartesian coordinates the integral to calculate the field component Bz(x
′, y′, z′)

is

Bz =

R∫

−R

√
R2−x2
∫

−
√
R2−x2

σ(z′ − z0)

[(x′ − [x0 − x])2 + (y′ − [y0 − y])2 + (z′ − z0)2]
3
2

dydx, (3.4)

where σ represents the constant value of the magnetic charge density. If one

is interested only in relative changes of Bz, the magnetic charge density can be

assigned to the value of unity. The integral in equation (3.4) is evaluated first

with respect to variable y and then with respect to variable x.
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Apparently there is no analytical result to this integral, but it is common proce-

dure in engineering sciences to solve these kinds of difficult equations numer-

ically. When inserting values to variables x′, y′ and z′ in equation (3.4), and

solving the integral numerically, it will give the z-directional field strength as the

answer. To make the equation simpler, the constants x0, y0 and z0 can be set to

point to the origin of the coordinate system so that they are all zero. Then the

point (x′, y′, z′) where the magnetic field is evaluated is measured as a distance

from the origin.

To make equation (3.4) fit to the notations used in Figure 3.6, a transformation to

a polar coordinate system is in order. To achieve this, substitutions x = ρ cos(φ)

and y = ρ sin(φ) are needed, and the infinitesimal surface area element changes

from dS = dy dx to dS = ρ dρ dφ. Similarly the limits of integration change from

the Cartesian domain to the polar domain. With these changes, the integral (3.4)

becomes

Bz =

2π∫

0

R∫

0

σ(z′ − z0)ρ

[(x′ − [x0 − ρ cos(φ)])2 + (y′ − [y0 − ρ sin(φ)])2 + (z′ − z0)2]
3
2

dρdφ.

This should give the same numerical results as (3.4), but maybe the notation is

more intuitive in this form.

Some experimental results of a numerical simulation based on the derived model

are presented in Figure 3.7. In this simulation the magnetic field strength Bz

of a cylindrical magnet is calculated as a function of distance to the z- and y-

coordinate directions from the origin (x0, y0, z0), which is fixed to the centre of

the top surface of the cylindrical magnet. The diameter of the magnet in the

numerical analysis was set as 13 mm and the magnetic charge density σ had a

constant value of 1.

The purpose of the analysis is to show the relative changes in the magnetic field

as a function of the distance from the centre of the magnet, and not to obtain ex-

act values for the magnitude of the magnetic field. The results obtained from the

theoretical model have been verified to be in excellent agreement with measure-

ments on actual cylindrical magnets [40]. The measurements in the experiments

were made using a Hall probe DC magnetometer to validate the theoretical re-

sults.

So far the treatment has concerned only a single cylindrical magnet. In the case

of several magnets, the contribution from each magnet is approximately a direct

sum of individual field strengths.
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Figure 3.7: Simulated magnetic field of a cylindrical pickup magnet

3.2.3 Magnetic interaction between a pickup and strings

The physical actuator that generates the signal from the magnetic pickup is the

interaction of the strings with the magnetic field of the pickup’s magnets. This

interaction is extremely material dependent, and only certain metals are suffi-

cient for producing decent signal levels. Materials are classified as diamagnetic,

paramagnetic or ferromagnetic, based on the material’s internal behaviour under

the influence of an external magnetic field. Strings for electric guitars are made

from ferromagnetic metals such as steel (iron) and nickel because ferromagnetic

materials interact most powerfully with external magnetic fields.

The magnetic properties of materials are determined by atomic-level magnetic

dipole moments ~µ, which are vectors because of their directional dependency on

external fields. Initially in a demagnetised piece of material, the magnetic dipole

moments are randomly oriented all around the material and their magnitudes

basically cancel each other out. When the demagnetised piece of material is

brought close to a permanent magnet that generates a constant magnetic field,

the magnetic dipoles align themselves to the direction of the external field, and

their individual magnitudes contribute to the same direction. This is the thing

that makes the initially demagnetised piece of material magnetic in the atomic

level.
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Well, that’s a fine piece of theoretical jargon, but how does all this apply to

guitar pickups? When the guitar strings are not in contact with the magnetic

field generated by the magnetic polepieces of the guitar pickup, the strings are

demagnetised with the directions of the dipole moments ~µ randomly scattered.

After the initially demagnetised string is placed on top of the cylindrical magnet

of a guitar pickup, the situation is somewhat similar as is drawn in Figure 3.8.

N

S

N

S

~µ

~F ~F

~B
~B

= ~µatom

Figure 3.8: String magnetisation within a magnetic field of a pickup magnet

Figure 3.8 tries to visualise the alignment of the magnetic dipole moments ~µ

inside the guitar string after the string is placed into the constant magnetic field

~B of the pickup magnet. The part of the string that is influenced by the magnetic

field also becomes magnetised with the same orientation of north (N) and south

(S) poles as the pickup magnet has. The similar polarity of magnetisation causes

a magnetic attraction force ~F to affect between the pickup magnet and the string.

This force pulls the string slightly towards the permanent magnet.

After the string has been magnetised by the pickup magnet, the string and the

pickup form a common magnetic unit. The field lines of this magnetic system

become connected to each other’s south and north poles as shown in Figure 3.9.

Motion of the string on top of the pickup changes the total magnetic field of the

system and the changes in the magnetic field induce an electromotive force ε to

the coil of the pickup.

Returning to the simple model described by Horton [40], the same article extends
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Figure 3.9: The effect of guitar string magnetisation on the field ~B of the pickup

the magnetic field calculations to include a ferromagnetic guitar string above the

cylindrical magnet. The ideology presented by the article is quite clever, although

it is an oversimplified model of the situation.

The main idea is to eventually be able to simulate the e.m.f. induced in the coil

of the pickup. For this objective it is necessary to observe the relative changes

of the magnetic field in the direction parallel to the centre axis of the cylindrical

magnet. The major assumptions are that the magnetic field of the cylindrical

magnet is much stronger than the local field of the magnetised string and the

magnetisation of a small piece of the string at coordinates (x′, y′, z′) is propor-

tional to the magnetic field of the cylindrical magnet evaluated at (x′, y′, z′). The

total magnitude of that local magnetic field at a specific point of the string is

∣
∣
∣ ~BS

∣
∣
∣ =

2π∫

0

R∫

0

σρ

[(x′ − [x0 − ρ cos(φ)])2 + (y′ − [y0 − ρ sin(φ)])2 + (z′ − z0)2]
dρdφ,

where the notation ~BS is used to indicate the local field of the string at coordi-

nates (x′, y′, z′), and σ still describes the magnetic charge density, which is taken

as a constant in this case due to the assumption of uniform density. This mathe-

matical model follows directly from the geometry of the system. At the location

of the string it is not relevant to concentrate only on the z-coordinate direction,

but it is absolutely necessary to take the total field to describe the field at the

string.

The relative changes of the magnetic field along the z-coordinate direction are
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meaningful at point (x0, y0, zp) because according to the analysis of Horton, the

total magnetic flux through the pickup coil is proportional to the magnetic field

at the centre axis of the cylindrical magnet. In reality the total flux would be

a sum of all Bz values at locations (xp, yp, zp) within the inner diameter of the

pickup’s coil, but for the sake of simplicity it is assumed here that in a symmetrical

situation the relative changes in the total flux can be estimated by taking the flux

as ΦB = Bz(x0, y0, zp).

The magnetic field of the small piece of string at location (x′, y′, z′) has influence

to the point (x0, y0, zp) according to the geometry of the system. The distance is

measured between the points and the unit vector r̂ is giving the direction, so that

Bz(x0, y0, zp) = γ
∣
∣
∣ ~BS

∣
∣
∣

(z′ − zp)

[(x′ − x0)2 + (y′ − y0)2 + (z′ − zp)2]
3
2

. (3.5)

The variable γ in equation (3.5) is just a scaling factor, describing the magnetic

susceptibility of the string. Equation (3.5) means that changes in the local mag-

netic field and the relative displacement of the string are reflected to the field

component Bz observed at the centre axis of the pickup magnet.

The whole assembly, including the top surface of the cylindrical magnet and the

string above the magnet along the x-axis with the vectors connecting the relevant

points, is visualised in Figure 3.10. Numerical simulations can be carried out

~r

x

z

y

ρ

(x0, y0, zp)

(x0, y0, z0)

(x′, y′, z′)

φ
R

Figure 3.10: The string’s magnetic field at (x′, y′, z′) reflects to point (x0, y0, zp)

using equation (3.5) to approximate the (relative) changes in the magnetic flux
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in the direction perpendicular to the top surface of the cylindrical magnet and

the pickup coil.

However, it is extremely important to note that when using equation (3.5), the

string is now localised to a single point (x′, y′, z′). This is accurate enough if the

interest is to examine only relative changes in the magnetic field, since the mo-

tion of an ideal string is linear when observing it from one single point (x′, y′, z′).

From the point of view of numerical simulations, the string can be extended in

length by adding more localised points along the x-axis. This extension requires

that equation (3.5) has to be calculated several times with different values of

(x′, y′, z′) and summing the results together. Equation (3.5) can be made even

more general by assigning x0 = xp and y0 = yp, where xp and yp refer to arbi-

trary coordinates in x and y directions respectively, and adding together the field

changes in several points on the surface of the magnet.

The relative changes of the magnetic field caused by the string at (x0, y0, zp) can

be plotted as a function of the horizontal displacement distance from (x0, y0, zs),

where zs refers to the height of the string above the surface of the magnet. Figure

3.11 draws the calculated relative magnetic field alongside the calculated field of

the magnet without a string for comparison purposes. Clearly the changes caused
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Figure 3.11: Relative changes in the magnetic field at x0, y0, zp due to string dis-

placement

by the string’s local field at point (x0, y0, zp) decay more abruptly to zero with
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increasing distance compared to the plain field of the magnet. For visualisation

purposes the two curves have been scaled to an equal magnitude at 0 mm, but in

reality the magnitudes will differ significantly.

Without any simulations, a major conclusion can already be made from the expo-

nential format of the simulation model itself. The magnetic pickup is not a linear

transducer for the motion of the string. The displacement of the string is trans-

formed by a ’square root’ mapping to the changes of the magnetic flux through

the coil of the pickup. This type of distortion is depicted in Figure 3.12, where

the solid line represents the purely horizontal vibration with a 4 mm amplitude,

and the dashed line indicates the vertical direction of vibration with a 0.75 mm

amplitude. The numerical calculations were carried out using a 13 mm magnet

diameter and the string was placed 5 mm above the centre of the magnet’s top

surface. The changes in the magnetic field were observed at 2 mm above the

magnet.
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Figure 3.12: Simulated magnetic field changes due to string vibration

Clearly the waveforms are not purely sinusoidal, although in this case the am-

plitudes have been chosen to be unrealistically large to enhance the effect of

nonlinearity. Similar observations have also been made with other mathematical

pickup models, as indicated in article [41].

An interesting artifact in the results shown in Figure 3.12 is the relatively large
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difference in sensitivity between the horizontal and vertical directions. A small

deflection to the vertical direction changes the field considerably more than the

corresponding defection to the horizontal direction. Furthermore, the period

of the vibration of the horizontal deflection seems to be half from the vertical

period. The periodicity of the horizontal vibration will not yet become clear

from this context because this model does not include the effect of the plucking

position. The doubling of frequency is true only for symmetric vibration about

the centre of the magnet, which is theoretically obtained by placing the pickup

and plucking position to
L

2
. Later it is observed that asymmetricity caused by the

plucking position will reveal the true period of the horizontal vibration. Anyhow

it is quite shocking that in certain theoretical cases the fundamental frequency is

completely absent from the transduced signal.

A small numerical simulation session was carried out to find out more about the

nonlinearity of the guitar pickup. Numerical analysis was done with the model

by setting the centre of the magnet’s top surface at the origin of the coordinates,

and the string to 3 mm above the magnet with a diameter of 13 mm. The mo-

tion of the string went through an analytical sine wave period, which in case

of a linear transducer should be measured as a pure single-frequency sine wave

in the magnetic field oscillation. The changes in the magnetic field component

Bz were calculated at (x0, y0, zp), where zp was 1 mm above the midpoint of the

magnet. The vibration amplitudes used were 0.1 mm, 1.1 mm, 2.1 mm and 3.1

mm. The simulation was executed for one full vibration period and the Dis-

crete Fourier Transformation was used to calculate the harmonic spectrum of the

curve describing the change of Bz. The numerical results of the DFT analysis

are presented in Table 3.1. The amplitude of the primary component has been

normalised to unity so that the amplitudes of the upper partials are percentual

values from the primary component.

Because of the symmetry in the simulation setup, the fundamental frequency is

missing from the results and the second harmonic frequency is now taken as the

fundamental. That is why every second amplitude is zero in the set of tabulated

values. The results show that only vibration amplitudes below 0.1 mm will be

mapped to a relatively clean sine wave by the pickup magnet. In practise this

means that the notes played on the electric guitar will be slightly distorted for

a few tenths of a second after which the amplitude of the string vibration will

decay to a displacement level where the pickup gives an almost linear response

to the played note.
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Table 3.1: The frequency response of Bz for a sine wave input

n 0.1 mm 1.1 mm 2.1 mm 3.1 mm

f1 0.00000000 0.00000000 0.00000000 0.00000000

f2 1.00000000 1.00000000 1.00000000 1.00000000

f3 0.00000000 0.00000000 0.00000000 0.00000000

f4 0.00078408 0.08284069 0.23003543 0.36968213

f5 0.00000000 0.00000000 0.00000000 0.00000000

f6 0.00000054 0.00638874 0.04932321 0.12774577

f7 0.00000000 0.00000000 0.00000000 0.00000000

f8 0.00000012 0.00047469 0.01019443 0.04260305

f9 0.00000000 0.00000000 0.00000000 0.00000000

f10 0.00000004 0.00003447 0.00205996 0.00138987

3.2.4 Electromagnetic induction in a magnetic pickup

Now that it is approximately clear how the magnetic field of the magnetic pickup

behaves, it is time to examine how the changes in the magnetic field are trans-

formed into an electric signal. The fundamental interaction between the mag-

netic field and the induced e.m.f. is specified by Faraday’s law of induction.

When using a magnetic pickup as a transducer, the frequency of magnetic field

oscillation is directly related to the frequency of the string vibration, whereas the

amplitude of the induced electromotive force ε is related to the velocity of the

string vibration. This follows directly from Faraday’s law,

ε = −dΦB

dt
, (3.6)

where the rate of change of the magnetic flux ΦB is directly proportional to the

induced electromotive force ε. If the coil consists of several turns of wire, as

definitely is the case for a magnetic pickup, the induced electromotive force is

scaled by the number of turns N , namely

ε = −N
dΦB

dt
.

The link between magnetic flux ΦB and the magnetic field ~B is defined as

ΦB =

∫

~B • d~S, (3.7)
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in the sense that the total magnetic field through some surface S sums up as the

magnetic flux ΦB. The dependency between the flux and the magnetic field is

illustrated for reference in Figure 3.13. The idea of a flux was already used when

examining the model of the pickup magnet.

S

I

~S~B
~S

I

dS

φφ
d~S

ΦB = ~B • ~S dΦB = ~B • d~S

ε = −dΦB

dt

Figure 3.13: Magnetic flux through pickup windings

When the amplitude of the induced e.m.f. depends on the string’s velocity instead

of displacement, significant differences occur in terms of the spectrum of the

string vibration. Equation (2.32) in Chapter 2 describes the motion of the string

and it is based on displacement in the {xy}-plane. To represent the velocity of the

string, a time derivative of equation (2.32) is needed. Differentiation of equation

(2.32) with respect to time yields

∂y(x, t)

∂t
= −

∞∑

n=1

cTnπAn

L
sin
(nπx

L

)

sin

(
cTnπt

L

)

, (3.8)

and inserting the multipliers An,

∂y(x, t)

∂t
= −2acT

π

(
L

p
+

L

L− p

) ∞∑

n=1

1

n
sin
(nπp

L

)

sin
(nπx

L

)

sin

(
cTnπt

L

)

.

Now the amplitudes of the harmonic components fade away with the leading

term
1

n
instead of

1

n2
of equation (2.34). This means that the higher spectral har-

monics of the string vibration will be more dominant when using the magnetic

pickup as the electrical transducer device. As mentioned in section 3.1, the posi-

tioning of the pickup makes an additional contribution to the spectrum. Figure

3.14 gives an idea of the situation by plotting the amplitude components of string

vibration when the string is plucked at
L

6
and the magnetic pickup is located at

L

9
along the string. The difference to the plain spectrum of the plucked string

shown in Figure 2.10 is enormous.
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Figure 3.14: Amplitude components of a string; measured from a magnetic pickup

In relation to the earlier treatment of changes in the magnetic flux due to string

vibration, the model of equation (3.5) can be used with a real string displacement

model to simulate the waveform of the induced electromotive force to the coil

of the pickup. The induced e.m.f. is obtained from equation (3.5) by differenti-

ating it with respect to time - just like Faraday’s law says. Figure 3.15 depicts a

situation where the pickup is placed at position
L

4
and the string is released to

vibrate in a mixed horizontal/vertical direction by plucking at position
L

6
along

the length of the string.

The vibration sequence is modelled by the ideal string model, where the two

identical waves are moving to opposite directions and reflecting without losses

from the boundaries. Only ten upper partials were used to generate the form of

the string to have some ’realistic’ roundness to the waveforms. In a pure theo-

retical case when an infinite amount of upper partials are included in the calcu-

lations, the waveforms would have sharp edges and long straight line segments.

The initial conditions for the numerical analysis are similar as in the earlier sim-

ulations. The string was located at 5 mm above the magnet and changes in the

magnetic field were observed at 2 mm above the magnet. The magnetic field

component Bz at the centreline of the magnet was chosen to represent the rela-

tive flux of the whole magnet, so no additional sums of Bz at different locations

need to be calculated.
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0 L 2L 3L 4L

period T

Φ

y(L/4,t)
dΦ
dt

Figure 3.15: String displacement versus induced e.m.f.

The period T of the vibration sequence can be deduced from equation (2.1) by

the relation

f =
1

T
⇒ T =

1

f
= 2LcT ,

which indicates the time that the wave moves a distance 2L with a velocity cT of

the transverse waves propagating in the string. This clears out the obscurities in

the period of the horizontal vibration, which were indicated in Figure 3.12.

The situation identical to Figure 3.14 can be reproduced from the perspective of

the model provided by Horton. By initialising the numerical analysis to calculate

the pickup response for a string plucked at
L

6
with a 2 mm amplitude and the

pickup placed at
L

9
, a harmonic spectrum can be plotted from the graph of the

current induced to the coil of the pickup. The numerical calculations are exactly

the same as when simulating the curves in 3.15, but now 1000 spectrum compo-

nents were taken along to the analysis. For comparison purposes, the analytic

differential of string displacement describing the velocity of the string is shown

along with the simulation results in Figure 3.16.

Otherwise the waveforms describing the induced e.m.f. appear to be similar, but

whereas the idealistic analytical model builds up as a square wave, the simulated

model results in more like a shark’s fin wave.

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



3.2 MAGNETIC PICKUPS 195

0 L 2L 3L 4L

period T

y(L/9,t)

dΦ/dt

dy/dt

Figure 3.16: String displacement versus simulated e.m.f. and theoretical result

Now it is of course interesting to see how well the amplitude spectrums of these

models match each other. Figure 3.17 indicates that the analytical differential

model predicts correctly the nodes caused by the plucking position and pickup

location. The simulated model does not locate either of these nodes and it does

not follow the theoretical expectations very well either.

To defend the validity of the simulation model, it has to be noted that the simula-

tion was run with a relatively large string displacement which creates additional

nonlinearity to the results. In addition, the initial position of the string was de-

fined to be in the middle of the magnetic polepiece. This way the simulated

horizontal pluck vibrates on both sides of the centreline, also creating additional

nonlinearity, which can be noticed as the small step before the shark’s fin in Fig-

ure 3.16. If the vibration amplitude is kept small and the resting position of the

string slightly off from the centreline, the simulation model would in fact get

very close to the ideal model.

It is necessary to investigate the linearity issue also from the viewpoint of induced

e.m.f. A similar analysis was conducted as in the case of magnet response; the

string was modelled as if it had been plucked from the midpoint, and only the

fundamental frequency component was retained to give a pure sine wave motion.

If the response of the pickup is linear, this simulation setup should produce an

ideal sine wave as the induced e.m.f. of the pickup. In the simulation setup, the
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Figure 3.17: The amplitude spectrum of the waveform induced to the pickup coil

string was vibrating horizontally 3 mm above the magnet and the changes in the

magnetic field were recorded at 1 mm above the magnet. The amplitudes of the

horizontal string displacements were 0.1 mm, 1.1 mm and 3.1 mm. Figure 3.18

draws a nice conclusion of the numerical analysis results.

0 L 2L

period T

0.1mm

1.1mm

3.1mm

Figure 3.18: Induced waveforms for different amplitude sine wave input
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It seems that the simulation model would still give a reasonably linear e.m.f.

response even for 1 mm displacement amplitudes. As the amplitude grows, the

sine wave starts to get distorted by kind of falling towards the right.

Although these results seem to be very rational, it is not possible to say for sure

that the absolute limit for an undistorted response is exactly the 1 mm displace-

ment amplitude. These simulations are extremely good for indicating relative

differences between different amplitudes, but undoubtedly they cannot predict

the absolute values of vibration amplitudes that will become distorted by the

magnetic pickup. The simulations used unity values for the magnetic suscep-

tibility γ of the string and for the magnetic charge density σ. In reality, these

and many other small details that are now neglected will have an effect on the

results.

3.2.5 The magnetic field generated by the coil of a pickup

Based on the analogy between electric and magnetic fields, the current induced

to the coil of the pickup should by assumption generate a similar magnetic field

that initially caused the current to flow in the coil. This assumption can be

analysed by deriving an expression for the magnetic field generated by a current

carrying solenoid.

When a current is flowing in a solenoid or in any piece of wire in general, a mag-

netic field is generated. According to basic textbook physics, in case of a solenoid

the magnetic field due to current flow is quite similar to the field generated by

a permanent cylindrical magnet. For basic analysis, it is enough to examine the

field generated by one current carrying loop of a solenoid, depicted in Figure

3.19, to see whether the expressions have similarity to equations presented in

section 3.2.2. To obtain an expression for the magnetic field of current carrying

wire shown in Figure 3.19, one can use the Biot-Savart law. This law states that

~B(~r) =
µ0I

4π

∮

S

d~l

|~r − ~r0|2
× ~r − ~r0

|~r − ~r0|
, (3.9)

meaning that the total field at some point of space is obtained by integrating

around a closed path S in space. In equation (3.9) it is assumed that the point

(x0, y0, z0) is not fixed to the origin of the coordinate axes. For simplicity, in

this case one can take point (x0, y0, z0) as the origin so that ~r0 = 0. Then the

Biot-Savart law is simply

~B(~r) =
µ0I

4π

∮

S

d~l

|~r |2 × ~r

|~r | =
µ0I

4π

∮

S

d~l

|~r |2 × r̂, (3.10)
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ρ
θ

dBx

dBz d ~B

d~l

θ

(x0, y0, z0)

Figure 3.19: The magnetic field at a distance P from the centre of a current loop

where r̂ is a unit vector in the direction of ~r.

In the situation depicted in Figure 3.19, the small d~l piece of conducting wire is

always perpendicular to the position vector ~r. Therefore, the differential element

of length can be handled as a non-vector quantity, and then an infinitesimal slice

of ~B has the magnitude

|d ~B| = µ0I

4π

dl

|~r |2
|~r |
|~r | =

µ0I

4π

dl

|~r |2 ,

which is obtained simply by taking the absolute value of ~r and noting that the

differentiation cancels out the integral from the right side.

From the geometrical setup of Figure 3.19 it also follows that the vector product

~r • ~r = ρ2 + z2, so that

|d ~B| = µ0I

4π

dl

(ρ2 + z2)
.

The differential magnetic field vector d ~B can be separated into the axial compo-

nents of dBx and dBz, from which the component

dBz =
µ0I

4π

dl

(ρ2 + z2)
cos θ =

µ0I

4π

dl

(ρ2 + z2)

ρ

(ρ2 + z2)
1
2

.

From here the total field Bz can be integrated to reveal the equation

Bz =
µ0I

4π

ρ

(ρ2 + z2)
3
2

∫

dl =
µ0Iρ

2(ρ2 + z2)
3
2

, (3.11)

which is similar to the field-equation of a cylindrical magnet. The most important

term to note here is the (ρ2 + z2)
3
2 term in the denominator. This term arises

from the geometry of the system and is therefore similar to the expression of
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a cylindrical magnet field. The factorial multipliers in front of equation (3.11)

are not directly transferable to depict magnets but similar scaling terms can be

identified from magnet analysis.

To apply the solenoid model to cylindrical magnet modelling, the effect of a

continuous set of loops covering the whole distance of ρ as depicted in Figure

3.19 needs to be included in the model. For this purpose, another integral needs

to be added to integrate the top plane of the magnet along ρ. The model of

equation (3.11) only gives the magnitude of Bz at a distance along the axis of

the solenoid, so the extension to an arbitrary position in space would need to be

added.

3.2.6 A single-coil pickup vs. a humbucker

The primary reason for the development of the so-called ’humbucker’ pickup is

related to electromagnetic noise problems of the single-coil pickups. When talk-

ing about ’hum’ in the context of magnetic guitar pickups, one usually means the

electromagnetic radiation arising from the 50/60 Hz power line, which is present

in every building and of course nearby all power transmission line networks. The

fact that electric guitars need electricity to work as intended makes the problem

of hum inavoidable, but with some clever tricks it is possible to reduce the hum

considerably.

The basic physics behind the theory of electromagnetic waves is rather compli-

cated and it is based on a set of wave equations derived from Maxwell’s theory of

electromagnetism. These wave equations have a similar form as the wave equa-

tion of the ideal string, the format being the same for both ~E and ~B. The wave

equation for the electric field is

∇2 ~E = ǫ0µ0
∂2 ~E

∂t2

and for the magnetic field,

∇2 ~B = ǫ0µ0
∂2 ~B

∂t2
,

where the differential operator nabla is a shorthand notation of the form

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

The solutions of the differential equations for ~E and ~B are sinusoidal waves, just

like in the case of an ideal string. One of Maxwell’s four equations says that

∇× ~E = −∂ ~B

∂t
.
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Without further derivation this links the electric and magnetic fields together, the

factor of proportionality being
1

c
,

~B =
1

c
(k̂ × ~E).

In another words, where there exists an electric field, there is also a magnetic

field present. Figure 3.20 is drawn to depict the relation between fields ~E and

~B.

~E

~B

Figure 3.20: The polarized electromagnetic wave of fields ~E and ~B

The other fact of the matter is that these electromagnetic waves are propagat-

ing everywhere. The velocity of propagation depends on the medium where

the waves travel but generally electromagnetic waves move with the speed of

light. Although the transverse vibrations of the electromagnetic waves would

have a low frequency, the waves still propagate in air and in other substances at

extremely high velocity. The velocity of propagation and the frequency of trans-

verse vibrations of ~E and ~B are not connected in any way, in contrast to the case

of the vibrating string. One simply cannot hide the pickup from these waves, and

because the magnetic field component of electromagnetic wave changes with

time, it induces a current to every inductor on its path of propagation, including

guitar pickup coils.

One solution to protect the pickup from the low-frequency hum would be to

enclose the pickup inside a metal box because sufficiently thick pieces of highly

conducting material reflect most of the electromagnetic radiation. The portion

of the wave that is not reflected away penetrates into the material and slowly

attenuates as it penetrates deeper. A quantity δ called the skin depth gives a

measure of the distance of penetration where the wave has attenuated by a factor
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of e−1. In mathematical terms, the skin depth is defined as

δ =

√
1

πfµσ
, (3.12)

where µ is the magnetic permeability and σ describes the conductivity of the ma-

terial. To fully attenuate the penetrating signal of electromagnetic interference,

the thickness of the shielding material should be ten times the value given by

equation (3.12). For 50 Hz radiation it would require a metal plate of over 50 mm

to fully attenuate the electromagnetic interference. Surely this is not a feasible

solution to block the hum. [9, p. 431]

A delicate solution for the hum problem is depicted in Figure 3.21, which presents

the idea of a humbucker pickup. In principle, the humbucking pickup consists of

two single-coil pickups connected together in series.

V1

V2

Vout

0

0

0

I1 I2

V1 V2

Vout = V1 − V2

S

S

S

S

S

S

N

N

N

N

N

N

Figure 3.21: Induced voltage due to electromagnetic interference

When the electromagnetic radiation hits the coils of a humbucker pickup, a simi-

lar (but not exactly the same) interference signal is induced to both coils. Then it

is only a matter of choice how to connect the coils so that the voltage measured

at the output would result in noise cancellation. Figure 3.21 has the idea that the

output voltage is taken from the same terminal of both coils so that the potential

difference would always fluctuate in phase. This would mean that the ground of

the circuitry would also fluctuate, which makes this a bit obscure solution. But in
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any case, this is the ideology behind cancelling the hum by connecting the coils

in series in a manner as described in Figure 3.21.

What about the string vibration then? Would it not also be cancelled this way?

No, because the direction of the magnet polarities are different in both pickups.

This way the induced electromotive force is pushing the current to the opposite

directions in the coils, and the series-connected coils make sure that these op-

positely induced electromotive forces add up to increase the output level of the

string vibration. This is visualised in Figure 3.22.
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Figure 3.22: Induced e.m.f. in the humbucker pickup due to string vibration

Several rewiring modifications are often suggested for modifying the tone of the

humbucking pickups [42, pp. 79–82]. Unfortunately most of them, possibly even

all of them, break the humbucking property of the pickup. This loss of humbuck

is due to the fact that the coils are reconnected in a way that the common-

mode signals do not cancel themselves out as a voltage difference at the output

terminals of the pickup.

3.2.7 A magnetic pickup as part of an electric circuit

As an electronic component, the magnetic pickup acts as a normal magnetic

core inductor. The main parameters that define the properties of the pickup

are directly related to the equivalent circuit [43] [44] of an inductor shown in

Figure 3.24a. It is clear that the resistance of the coil wire is in series with the
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inductance, but it is not that evident that there also appears a capacitor in parallel

with the inductance and the resistance.

The coil winding can be thought of as a parallel wire transmission line where

the nearby wires interact capacitively with each other. The capacitance builds

up all the way along the parallel turns of the winding and it is therefore a sum

of capacitances of individual loops of the inductor. There also exists winding-to-

core capacitance for conductive core inductors and layer-to-layer capacitance for

multilayer inductors [43]. Figure 3.23 indicates the turn-to-turn and turn-to-core

capacitances between individual turns of the coil windings and to the conductive

core of the inductor. These types of capacitances are commonly referred to as

stray capacitances.

1 2 3 4 n

Ct Ct Ct Ct Ct

Cc Cc Cc Cc Cc

Figure 3.23: Stray capacitances between inductor windings

It is quite another question how the stray capacitance in the inductor windings

is modelled mathematically [43] [44]. Needless to say that the theoretical for-

mulae to calculate the total capacitance of a certain type of inductors from a

geometrical layout is out of the scope of this book. It is still possible to create a

simple model for a pickup capacitance without the need to evaluate the different

types of capacitances separately.

The relevant piece of information is simply that the total capacitance of the in-

ductor is actually connected in parallel with the coil and it can be ’measured’

between the opposite ends of the inductor. Therefore, the total impedance of the

pickup is a combination of RL, L and CL of the pickup, as depicted in Figure

3.24a. The subscripts in this particular case are there to remind about the fact

that the resistance and the capacitance are internal quantities of the inductor.

The RLC equivalent circuit of a magnetic pickup behaves like a second order filter.

A simple transfer function for a general magnetic pickup can be derived from

Figure 3.24b, where an AC source has been added to model the electromotive

force induced to the inductor as a result of electromagnetic induction due to

changing magnetic field. Equating the current loop in Figure 3.24b leads to the
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(a) Equivalent inductor model
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(b) Inductor as a signal source

Figure 3.24: Practical inductor models

expression [

sL+RL +
1

sCL

]

I(s) = ε(s).

The output voltage Vout of the pickup equals the voltage over the capacitor Vc(s)

so that the transfer function of the magnetic pickup can be written as

Vc(s)

ε(s)
=

Vout

ε(s)
= I(s)

1

sCL

=
1

LCL

(

s2 + s
RL

L
+

1

LCL

) . (3.13)

This transfer function can be used to evaluate the frequency response of a typical

magnetic core inductor as a guitar pickup is.

A median value for the resistance of a typical magnetic pickup is somewhere

between 7 kΩ - 10 kΩ, and typical inductance values are in the range of a few

henries [45, pp. 91–94]. This means that the inductance of a magnetic pickup

is quite large. According to Lemme [46], the capacitance of the coil of a gui-

tar pickup commonly varies between 80 pF to 240 pF, but in some cases it can

also exceed this range a little, depending on the geometry of the whole pickup

construction. For averaged values of L = 5 H, RL = 10 kΩ and varying CL of

80 pF to 320 pF, the transfer characteristics of a magnetic pickup are as shown in

Figure 3.25.

Magnetic pickups are advertised to have a clear resonant peak in their transfer

characteristics. This is true according to Figure 3.25, but a resonance peak can

be obtained with basically any normal inductor. Still, the resonant peak of the

guitar pickup is claimed to have something magical in it. It does not. It is just

like any other inductor. Somehow the ear is quite sensitive to the changes in

the sound caused by this resonance peak of the magnetic pickup and it seems to

appeal to the hearing sensation in a positive manner.

A typical transfer function of the magnetic pickup yields a resonance frequency
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Figure 3.25: Frequency response curves of a magnetic pickup with varying CL

of a few kilohertz. The resonance frequency fr for a regular RLC circuit can be

calculated with the analytical formula

fr =
1

2π

1√
LCL

,

meaning that the resistance does not affect the resonance frequency at all. The

most surprising thing in the simulation results was the gain of about 20 dB at the

resonance frequency. Passive circuits are not famous for signal amplification.

The location and shape of the resonance peak is determined from the equivalent

model of the inductor as the resonance frequency of the basic RLC circuit. The

effect on the resonance peak from changes in each variable, namely RL, L and

CL, can be summarised with the following bullets:

• the peak moves towards higher frequency as inductance L increases

• the peak moves towards lower frequency as capacitance CL increases

• the peak becomes smaller and wider as resistance RL increases

Obviously the decrease in each value has a reverse effect on the resonance peak.

A delicate tone modification can be implemented by connecting an additional

capacitor in parallel with the pickup. In principle the capacitance of this addi-

tional capacitor will directly sum up with the internal capacitance of the pickup,
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thereby lowering the resonance frequency by some amount. The resistance and

the inductance go hand in hand, since the resistance is effectively the resistance

of the inductor wire. Increasing the number of turns increases both inductance

and resistance. The only way to alter the inductance without touching the resis-

tance is to change the material or size of the permanent core magnet.

If both the resistance and inductance of the pickup are known, the transfer func-

tion of a magnetic pickup can be easily simulated with a certain degree of accu-

racy using the transfer function (3.13). The most critical effect comes from the

capacitance, and unfortunately the exact value of that capacitance is quite dif-

ficult to determine. Usually manufacturers document only the resistance value

quite accurately, but the value of the inductance is unknown and the capacitance

is never even mentioned anywhere.

The output impedance of a magnetic pickup can be evaluated from the equivalent

circuit in Figure 3.24b. The effective impedance of a pickup is measured as seen

from the output terminals. The impedance is evaluated as a parallel connection

of the capacitor with the inductor and resistor so that

Z =

1

sCL

(RL + sL)

1

sCL

+RL + sL
,

which simplifies to

Z =
RL + sL

LCL

(

s2 + s
RL

L
+

1

LCL

) =
Vout

ε(s)
(RL + sL). (3.14)

After identifying the resonance frequency term
1

LCL

= ω2
0 and making the substi-

tution s = jω, as we are naturally dealing with sinusoidal signals, the expression

for the impedance of the pickup is

Z =
ω2
0(RL + jωL)

(ω2
0 − ω2) + jω

RL

L

. (3.15)

Since the impedance Z defined via equation (3.15) is a complex number, it is not

possible to directly analyse the form of the impedance as a function of frequency.

The absolute value (or magnitude) of a complex number, on the other hand, is

a real-valued quantity. In the case of equation (3.14), one can apply the general

rule of calculating the absolute value of a ratio of complex numbers z1 and z2 as
∣
∣
∣
∣

z1
z2

∣
∣
∣
∣
=

|z1|
|z2|

,

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



3.2 MAGNETIC PICKUPS 207

meaning that the absolute values of the numerator and denominator can be eval-

uated separately. A similar simplification rule exists for the phase (or argument)

of a ratio of complex numbers

arg
z1
z2

= arg z1 − arg z2,

so that the phases of the numerator and denominator can be evaluated separately

and combined together with a minus sign.

The magnitude of the pickup’s impedance and the corresponding phase shift are

drawn as a function of frequency in Figure 3.26. Realistic averaged values ob-

tained from the pickup specifications were used to generate the magnitude and

phase plots so that the obtained impedance values are realistic. The impedance

0.5

1.0

1.5

2.0

100 1000 fr 10000
-100

-50

0

50

100

|Z
|[M

Ω
]

p
h
as

e
an

gl
e
θ

[d
eg

re
es

]
frequency [Hz]

|Z|
θ

Figure 3.26: Impedance curves of a magnetic pickup

of the pickup will reach a maximum value at the resonance frequency, where the

reactances of the inductor and the capacitor will have equal values. This is also

seen from the curve describing the phase shift, which hits zero at the resonance

frequency. The impedance calculation reveals that different frequencies will ex-

perience different impedance at the pickup, and also if the pickup is connected

to an external circuit (normally the tone and volume control circuit), it cannot

be modelled as a constant output resistance for all frequencies.

The two megohm impedance at the resonance frequency appears so huge... How

does it come about? At low frequencies below 500 Hz, the impedance approx-
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imately equals the value of the coil resistance because the impedance of the

inductor is low compared to the resistance, and the impedance of the capacitor

is large. So in the low frequencies it is just the capacitor impedance parallel to

the relatively small resistance, which in total equals the resistance due to the coil

winding.

At the resonance frequency, the impedance of the inductor and the capacitor are

large and also equal, so that the effective impedance comes from the parallel

connection of the inductor and the capacitor. This has a relatively huge value, as

is seen from Figure 3.26.

For modelling the humbucker pickups, it is sufficient to use an equivalent circuit

of Figure 3.27, where two single-coil circuits are connected in series. The output

L1

ε1

RL1

CL1

ε2

L2

RL2

CL2

Vout

Figure 3.27: An equivalent circuit of a humbucker pickup

impedance calculated from this equivalent circuit becomes Z1 + Z2, where the

expression for both impedances is obtained from equation (3.15).

The changes in the transfer function are not so evident since the two pickup

sections are interacting with each other. However, evaluation of the mesh matrix







sL1 +RL1 +
1

sCL1

0

0 sL2 +RL2 +
1

sCL2






×






I1

I2




 =






ε1

ε2






proves that the transfer function of a humbucker pickup is also a sum of two
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individual transfer functions of single-coil pickups shown in equation (3.13).

3.2.8 Measurements on a magnetic pickup

Unfortunately, without special and expensive equipment it is not possible to mea-

sure any magnetic properties such as the strength of the magnetic field of pickup

magnets. The measurements are therefore restricted to observing only the out-

put waveforms of a magnetic pickup as the guitar string is vibrating on top of it.

The measurements were done using a basic digital storage oscilloscope, which is

directly connected via a 10MΩ probe to the coil wire of the pickup. The single-

shot functionality of the oscilloscope was used to isolate the first few periods of

vibration, from where the initial spectrum can be evaluated.

In these measurements the focus is not to emphasise the actual spectrum of the

string but only to concentrate on the spectrum obtained from a magnetic pickup

located at a certain position along the string. Therefore, the weighting property

of the pickup location is not divided away when drawing the amplitude spec-

trum. If error limits need to be evaluated, the theoretical expectation values are

calculated with the certain weight factor to come in terms with the correct expec-

tation values. This is done to give an idea of the real signal components obtained

from the guitar pickup.

The pickup used in the measurements was a cheap replacement pickup, which

was bought as a spare part from a nearby electronics store. The pickup seemed

to be a single-coil TeleCaster clone intended to be used as the bridge pickup.

Figure 3.3 gives a good idea of how the pickup looks like on the outside. The

specifications for the pickup claim a resistance of 7.1 kΩ and an inductance of

5.9 H. The resonance frequency of the pickup was informed to be 3 kHz, but this

value has been obtained using a 680 pF load, which is intended to simulate the

effect of a guitar cable.

In the measurement session, the pickup was mounted at about 50 mm from the

left clamping support of the same measurement platform (Fig. 2.23), which was

used in the vibrating string measurements. The guitar string was adjusted to

vibrate about 1 - 2 millimetres above the centreline of a single polepiece of the

pickup shown in Figure 3.3. The effective length of the string was 600 mm so

that the pickup created a node at
L

12
.

The first set of measurements was conducted to investigate the induced initial

waveforms from horizontal and vertical plucks and to compare the measured
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results to the theoretical expectations. A sharp plastic pick was used to pluck the

string at different locations and the amplitude was kept relatively modest, but

not especially restricting the amplitude to certain limits. Figure 3.28 depicts the

measurement results of the first few periods obtained from a pluck at
L

6
.
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Figure 3.28: Measured waveforms from vertical and horizontal plucks at
L

6

The ideal waveform evaluated as the time derivative of equation (2.32) would

have one negative and one positive square pulse at the locations where the mea-

sured waveforms have the rounded spikes. The waveform from the vertical pluck

seems more closer to the theoretical predictions because the horizontal pluck

gave an extra ’hill’ just before the negative spike.

Eventually the ’hill’ was identified as a consequence of placing the string close to

the centreline of the pickup magnet pole. As the string crosses the centreline, it

starts to reverse the waveform that was obtained when approaching the centre-

line. Obviously the string was not exactly in the middle of the pickup pole, so

this is why the ’hill’ is smaller that the preceding rounded spike.

The measured waveforms shown in Figure 3.28 can be reproduced quite nicely

using the simulation model of Horton [40]. Only 20 upper partials from the ideal

spectrum of a string were used in the simulations to get that nice roundness

to the waveform. The simulation results surprisingly validate the usefulness of

the theoretical model based on the idea of magnetic point charges. The results
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also verify the mechanism leading to the extra ’hill’ observed in the horizontal

vibration waveform.
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Figure 3.29: Simulated waveforms from vertical and horizontal plucks at
L

6

The simulations also indicate the clearly stronger signal obtained from the ver-

tical motion of the string. This effect was not seen in the measurement results

of the real magnetic pickup. Anyhow, the plucking displacements were not con-

trolled during the measurements, so there is at least one source of uncertainty

which prevents official verification of the stronger signal observed in vertical mo-

tion.

The upper partial structures calculated from the measured waveforms of Figure

3.28 are shown in Figure 3.30. The spectrum analysis indicates that the nonlin-

earities of the magnetic pickup can noticeably affect the observed magnitudes of

the upper partials. Although the waveform of the vertical pluck seems relatively

theoretical, the spectrum reveals that the nonlinearities of the pickup cause the

node at the plucking position (6th upper partial) to gain energy and not indicate

the node properly.

However, despite the extra ’hill’ in the horizontal waveform, the node caused by

the plucking position is reproduced correctly in the spectrum. The node at the

12th upper partial due to the placement of the pickup and the plucking position

is not that clearly visible in either spectrum. These spectrums are not explicitly
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compared to the theoretical values at this point because the focus is to compare

the differences between the vertical and horizontal plucks.
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Figure 3.30: The calculated spectrums for vertical and horizontal plucks at
L

6

The waveforms for the vertical and horizontal vibration directions were also mea-

sured when the string was plucked at the middle of the string. Figure 3.31 shows

that the vertically directed pluck results in a relatively clean and symmetrical

waveform. The horizontal waveform, on the other hand, suffers even more from

the centreline problem. In this case, the second upper partial almost becomes

the fundamental frequency so that the sound is theoretically one octave higher

because of the centreline crossing effect.

The calculated spectrums from the midpoint plucks reveal the expected fact that

the nonlinearities observed in Figure 3.31 lead to a spectrum where every sec-

ond upper partial does not have minimum amplitudes as the theory predicts.

Due to the frequency doubling effect in the horizontal waveform, the upper par-

tials below the 10th harmonic are clearly emphasised compared to the expected

spectrum.

To produce a decent spectrum plot which would be comparable to the theoreti-

cal values, the initial deflection of the string prior to plucking has to be directed

to the horizontal direction, and the crossing of the polepiece centreline during

vibration should be avoided. The plucking amplitude also needs to be smaller
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Figure 3.31: The measured waveforms from vertical and horizontal plucks at
L
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Figure 3.32: The calculated spectrums for vertical and horizontal plucks at
L

2

than in the previous experiments to reduce unnecessary distortion due to nonlin-

earities of the pickup.

After several trials, one successful waveform was recorded. Figure 3.33 shows
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the measured waveform of a pluck executed at a distance
L

6
from the right clamp-

ing support. The extra hill is almost completely missing and the upward and

downward spikes seem to be relatively symmetrical in shape.

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18

vo
lt

ag
e

[V
]

time [ms]

horizontal

Figure 3.33: The waveform resulting from a ’successful’ pluck at
L

6

The corresponding spectrum with theoretical error limits looks similar to the one

drawn in Figure 3.34. The error limits have been defined in the same way as for

the measurements for the amplitude spectrums of string vibration. The example

script can be seen from Appendix C. The part where the effect of the pickup

location had been divided away has now been removed for this error analysis.

The upper and lower limits have been iterated numerically as the maximum

values that can be obtained with the given uncertainties in the measurements.

From the resulting spectrum, it is observed that the theoretical spectrum coeffi-

cients obtained as a time differential of equation (2.32) gave a good forecast to

the actual measured spectrum. Therefore, the graphical analysis derived from

the initial triangular shape of the string extends as a relatively good model for

the magnetic pickup as well, as long as the induced e.m.f. in the pickup stays

within a linear region. The measurement results also indicate that the model

obtained from the magnetic point charge might exaggerate the nonlinearities in

the magnetic transducer. However, if the plucking amplitude is kept very small

and the centreline crossing avoided in the simulations, the magnetic point charge

model is eventually in agreement with the triangular shape derivation.
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Figure 3.34: The harmonic spectrum resulting from a pluck at
L

6

The resistance, inductance and capacitance which define the essential electrical

characteristics of a magnetic pickup can be determined relatively easily. The re-

sistance of a pickup can be measured with a regular ohmmeter. The inductance

and capacitance can be measured indirectly with the help of the measurement

setup shown in Figure 3.35, where the pickup is connected in series with a volt-

age source and a shunt resistor RS. The voltage source vg should be a function

generator or equivalent and the device to measure vRS and other potential dif-

ferences in the circuit can be a regular multimeter or an oscilloscope.

When determining the inductance, the alternating voltage source vg should pro-

duce relatively low-frequency (100 – 500 Hz) oscillations. At such low frequencies

the capacitive reactance of the pickup is so large that it can be approximated to

be disconnected from the equivalent model of the pickup. When the capacitance

is neglected, the pickup can be modelled as an inductor and its internal resistance

connected in series. If a multimeter is used for the measurements, the voltage

equation for the circuit in Figure 3.35 is written using RMS values,

Vg = Vpickup + VRS, (3.16)

where all values are assumed to be measured values from the circuit. The voltage

components in equation (3.16) in terms with current IS are

VRS = ISRS and Vpickup = IS

√

R2
L + ωL2.
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1 kΩRS10 Vvg

is

VvRS

Figure 3.35: A rudimentary measurement arrangement to extract values for the

inductance and resonance frequency of a magnetic pickup

When the common current IS is eliminated by dividing the other voltage expres-

sion with the other, the inductance L can be solved from the resulting equation

as

L =
1

2πf

√
(
Vpickup

VRS

RS

)2

−R2
L.

This method requires two voltages to be measured from the circuit in 3.35: the

voltage over the shunt resistor VRS and the voltage over the pickup Vpickup.

The pickup capacitance can be calculated when the inductance and the resonance

frequency of the pickup are known. To measure the resonance frequency, one

simply needs to adjust the frequency of the voltage source vg and simultaneously

measure the voltage vRS with a multimeter or an oscilloscope. The frequency

where the measured voltage has a minimum value is the resonance frequency

of the pickup. After the inductance L and resonance frequency fr have been

determined, the capacitance can be calculated from the equation

C =
1

4π2f 2
rL

following from the definition of LC circuit resonance. [47]

3.3 Optical pickups

Optical pickups make use of a coupled system consisting of an infrared LED and

a photodetector between which the guitar string is placed. The first Light Emit-

ting Diode, a.k.a. LED, was developed in 1962. This electro-optical device was
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based on GaAsP (Gallium-Arsenide-Phosphide) layers, which emitted red light.

GaAsP is a semiconductor material, an alloy of gallium arsenide and gallium

phosphide. Nowadays, commercial LEDs are available for 247-1550 nm wave-

lengths, a range which covers approximately all the possible colours visible to

the human eye.

A photodetector is a device that senses emitted light and transduces it to electric

current. When a LED is coupled with a photodetector, a compact measuring de-

vice or an optomechanical switch is obtained. The most common photodetector

device is a photodiode, although light dependent resistors (LDR) and other type

of LEDs are also used as detectors of emitted light. Photodiodes are popular be-

cause of their rapid response time and wide linear range. A phototransistor is

created by combining a photodiode with an amplifying element. [48] [49]

The first optical guitar pickups were introduced already back in 1969, and sev-

eral more advanced models have been developed ever since. Optical pickups

have the advantage of having a compact, low power and low cost structure,

which employs commonly used techniques to build optical switches as discrete

components. Optical guitar pickups were primarily developed to tackle hum

problems and eliminate the string-attractive force of magnetic pickups. Optical

pickups are also more linear transducers compared to magnetic pickups. These

properties make the optical pickup quite superior over the traditional magnetic

pickup ... but still the optical pickups are very seldom used as guitar pickups.

The reason could not be the sound of the pickup, or could it?

3.3.1 An optical transducer as a guitar pickup

Reusing existing commercially available components for applications that they

are not initially intended for is efficient and environmentally friendly. This is

the case with optical guitar pickups, which in the most simplest cases can be

implemented using readily available photointerrupter or photoreflector modules.

The internal structure of these standard components is depicted in Figure 3.36.

The photointerrupter consists of an infrared light emitting diode (IR LED) and

a phototransistor. The light rays generated by the LED are focused directly to

the detecting surface of the phototransistor, making the transistor fully saturated

with the current generated by the incident light. The switching operation is

achieved by inserting an opaque object to block the line of sight between the

LED and the phototransistor. The current flow in the base of the phototransistor
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emitter detector

case

(a) Photointerrupter

emitter detector

reflector

(b) Photoreflector

Figure 3.36: Commercially available optoelectric components

can be controlled by casting a partial shadow over the phototransistor’s detector

area. The dependency between the shadow ratio and the amount of base current

is almost linear as is shown later.

A practical application of using a photointerrupter component as a guitar pickup

is shown in Figure 3.37. In a static configuration, the guitar string is placed be-

Figure 3.37: An optical interrupter switch used as a guitar pickup

tween the LED and the phototransistor so that approximately half of the emitted

light is blocked from reaching the detector area. When the string is vibrating

on top of the photodetector, the shadow ratio is modulated by the motion of the

string. The geometrical details of this implementation are shown in Figure 3.38.

If the photodetector is very small, the string displacement will reach very close to

the edges of the detector area. In these cases the performance of the interrupter
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1
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Figure 3.38: The ideology of the optical interrupter switch pickup

technique can be enhanced by using two LEDs in parallel to even out the intensity

of light observed at the edges of the detector area [50].

One reason for interrupter-style pickups not being favoured by guitarists is that

when placing a light/sensor pair on opposite sides of the string, it will disturb

important playing techniques such as palm-damping near the bridge of the guitar.

The use of a photoreflector module as a sensor of string vibration has also been

studied to some extent [51]. In the experiment described in article [51], the re-

flections were taken directly from the surface of the moving string, not employing

the use of the shadow casting technique as in the case of the photointerrupter

module.

Efficient implementation using the photoreflector as a guitar pickup requires

quite a lot of advanced theoretical studies because the light is reflected in dif-

ferent angles from the cylindrical surface of the string even when the string is

not moving. When the motion of the string is added, the reflection pattern be-

comes quite chaotic, and it is not that clear whether the amount of reflected light

actually correlates linearly to the motion of the string. One visualisation of the

actual reflective pickup setup is given in Figure 3.39, and it is trying to emphasise

the scattering of the reflected light rays from the surface of the string.

1

2
3

4

Figure 3.39: The ideology of the optical reflector pickup

The reflecting method can also make use of the shadowing technique. When used
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in this way, a mirror or an equivalent highly reflective surface is used to create a

perfect reflection and the reflected light is then obstructed by the moving string.

Many projects have tried to make use of the reflective technique but eventually

failed to get a decent signal out from the system. A simpler approach would be

to use solutions based on the interrupter technique.

3.3.2 An optical pickup as a signal source

A thing to consider in the emitted light rays of the LED is the direction depen-

dency of the light’s intensity. Depending on the geometry of the LED window

surface, the light does not spread evenly in all directions. The geometry of the

windowed LED surface at the air interface boundary determines the shape of

the radiation pattern of the emitted light. If the surface of the LED window is

of a planar type, the LED radiates light in a pattern called the lambertian emis-

sion pattern. Other common LED surface types are the hemispherical and the

parabolic surface. Figure 3.40 presents the surface geometries of the planar and

hemispherical LED windows.

planar LED hemispherical LED

Figure 3.40: The surface geometries of planar and hemispherical LEDs

The lambertian pattern obtained from the planar LED is analysed here as an

example because it is presumably the most common emission pattern. Analysis

of the emission pattern is needed to verify that the LED emits light sufficiently

evenly in the required angular directions so that in all use cases of interrupting

and reflecting the light, the LED will not be a source of nonlinearity from the

viewpoint of the photodetector device.

A formula that describes the lambertian pattern can be derived by using Figures

3.41 and 3.42 as references.

As shown in Figure 3.41, the light emerging from the light source is refracted at
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Φ dΦ
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dφ
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Figure 3.41: Refraction at the LED-air interface of a planar LED

the LED-air boundary. Assuming that Snell’s law of refraction is obeyed,

nledφ = nair sinΦ, (3.17)

and taking a differential with respect to the angles yields

nled dφ = nair cosΦ dΦ ⇒ dΦ =
nled

nair

1

cosΦ
dφ. (3.18)

An application of the energy conservation law requires that for the light intensi-

ties in air and in the LED, the relation

Iled dAled = Iair dAair

is valid. This states that the intensity of light passing through an infinitesimal

area element at the surface of the LED is directly proportional to the intensity

through some area element of air. Both of the area elements are assumed to be

part of a spherical surface that depicts the surroundings viewed from a point-like

source. Figure 3.42 illustrates the area element related to the surface which the

emitted light passes through.

The area element of a general spherical surface is calculated using the parametric

representation

~r(φ, θ) = R sinφ cos θ î+R sinφ sin θ ĵ +R cosφ k̂

of a sphere with radius R. The parameter θ spans over the horizontal angles and

φ goes through the angles in the vertical direction. The vector differentials to

angular directions φ and θ are

∂~r(φ, θ)

∂φ
= R cosφ cos θ î+R cosφ sin θ ĵ −R sinφ k̂

∂~r(φ, θ)

∂θ
= −R sinφ sin θ î+R sinφ cos θ ĵ.
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φ
dφ

Area element dA

Figure 3.42: An area element of a spherical surface

These are needed to calculate the surface normal vector ~N(φ, θ), which is defined

as a vector product

~N(φ, θ) =
∂~r(φ, θ)

∂φ
× ∂~r(φ, θ)

∂θ

= R2 sin2 φ cos θ î+R2 sin2 φ sin θ ĵ +R2 cosφ sinφ k̂,

from where the surface area element is evaluated as

dA =

∣
∣
∣
∣

∂~r(φ, θ)

∂φ
× ∂~r(φ, θ)

∂θ

∣
∣
∣
∣
dφ dθ.

After writing open the vector product and taking the magnitude, the expression

dA = R2 sinφ dφ dθ

is obtained for the spherical surface area element. Since the whole circumfer-

ence of the sphere is involved, the area element can be evaluated further by

integrating over the horizontal angle to reach a differential element,

dA =

2π∫

θ=0

dθR2 sinφ dφ = 2πR2 sinφ dφ,

depicted in Figure 3.42. From here the differential surface area element for air

becomes

dAair = 2πR2 sinΦ dΦ (3.19)

and after substituting equations (3.17) and (3.18) into equation (3.19), the ex-

pression

dAair = 2πR2n
2
led

n2
air

1

cosΦ
φ dφ
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is obtained.

Similarly for the LED, the surface area element is given by

dAled = 2πR2 sinφ dφ ≈ 2πR2φ dφ (3.20)

under the assumption that the angle φ is very small.

The intensity of light from the light source is given by the total source power,

which spreads like a spherical wave and attenuates over distance. Therefore, at

distance R in the LED, the intensity

Iled =
Psource

4πr2
.

Collecting all the previous equations together, it is possible to express the inten-

sity of the emitted light in the surrounding air as

Iair =
Psource

4πr2
n2

air

n2
led

cosΦ . (3.21)

[49, pp. 93–95]

Equation (3.21) can be visualised as a radar plot, where the intensity is drawn as

a function of radiation angle. Figure 3.43 indicates that the lambertian source

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0 ◦

90 ◦90 ◦

lamb

hemi

Figure 3.43: The far-field patterns of planar and hemispherical LEDs

gives a reasonably equal intensity in a ±10 degree angle around the zero angle.
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If the LED window is of the hemispherical type, then the intensity spreads evenly

to all directions. This should be enough to be able to trust the LED as a linear

source of light at least in the photointerrupter device, where the light rays are

not required to spread far from the direct line of sight.

The linearity aspect of the photoreceptor side and at the same time of the whole

pickup can be approached by practical methods of measurement. Figure 3.44

shows results from an experiment where a small light blocking object was moved

gradually over the photoreceptor area of a photointerrupter switch component

H21B1. The measurement results indicate a clear linear region, which could

be employed as the area to project the motion of string vibration on top of the

photodetector window. The linear region shown in Figure 3.44 extends only for a
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Figure 3.44: The linear region of operation of an optical switch. The graph is

adaptively redrawn from results provided in article [37]

distance of a few tenths of a millimetre. Since the diameter of the photodetector

window of H21B1 is 1 mm, the linear region is found approximately within 0.1

mm’s distance from the middle of the receiver window. In practise, this requires

an extremely high degree of accuracy in the placement of a string between the

LED and the photodetector. Light gauge strings often require reduction of the

photodetector sensor area because strings with a small diameter do not cover

exactly half of the receiver window. In this situation, excess light leaks from the

photoreceptor edges. The sensor area can be reduced using opaque tape, for
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example.

As magnetic pickups are sensing the velocity of the string vibration, optical pick-

ups are an example of displacement sensitive transducers. This property makes

a big difference to the spectrum content of the signal produced by the optical

pickup. Since the analytic formula (2.34) for the amplitude spectrum of the ideal

string is based on the displacement of the string, the same formula combined

with the pickup weight function describes the spectrum obtained from the opti-

cal pickup. In comparison to the magnetic pickup, the higher harmonic content

of the optical pickup is quite poor. This is compensated in practise by placing

the optical transducers in the vicinity of the bridge of the guitar. As explained in

section 3.1, placing the pickup near the string’s end support increases the ampli-

tudes of the high-frequency upper partials of the string vibration.

Figure 3.45 gives an idea of the spectrum of an optical pickup by plotting the

amplitude components of string vibration when the string is plucked at
L

6
and

the optical pickup is located at
L

9
along the string. There is a clear difference

compared to the spectrum of the magnetic pickup, shown in Figure 3.14.
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|An|

n

An ∼ 1

n2
sin
(nπp

L

)
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(
nπP

L

)

Figure 3.45: The upper partial structure of an optical pickup

The nodes in the analytic spectrum of the optical pickup are of course identified

at the 6th and 9th upper partials as they should be. The key feature of a dis-

placement sensing pickup is that in every situation the fundamental frequency
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has the highest amplitude and the following harmonics are scaled by the multi-

plier
1

n2
. Since the optical pickup forms a linear projection on the motion of the

string, elliptic trajectories and perpendicular motion in general are not correctly

transduced by the optical pickup. This is a clear defect compared to the magnetic

pickup, where the motion of the string is detected in all three dimensions.

3.3.3 An optical pickup as part of an electric circuit

The part of the optical pickup which couples with the following stages of tone

and volume control is the photodetector circuit, which is typically implemented

using a single phototransistor component. A phototransistor is generally a nor-

mal bipolar junction transistor where a photodiode has been connected between

the base and the collector. This idealisation model is shown in Figure 3.46.

DΦ

RC

VCC

ICIΦ

IB

IE

hv

Figure 3.46: A phototransistor as a photodetector device

A small-signal model based on the idealised phototransistor is depicted in Figure

3.47. Basically the small-signal model is equivalent with a basic BJT small-signal

model but the photodiode appears as a linear current source between the collec-

tor and the base. When the transition capacitances Cπ and Cµ are included in the

model, the frequency response curve will have a high-frequency limit where the

gain of the phototransistor will start to decay. The transition capacitances will

not affect the low-frequency response in any way. [52, pp. 127 – 132]

To examine the high-frequency response of a typical bipolar phototransistor, the

transfer function can be derived using the nodal matrix representation of the

small-signal model. Since the base resistance rb is usually very small, it is rational

to neglect it alltogether to simplify the setup to two voltage nodes V1 and V2,

which are labelled as nodes 1 and 2 in Figure 3.47. With this modification, the
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Figure 3.47: The phototransistor small-signal model

matrix equation becomes







1

rπ
+

1

rµ
+ jωCπ + jωCµ −jωCµ − 1

rµ

−jωCµ − 1

rµ

1

ro
+

1

rµ
+

1

RC

+ jωCµ






×






V1

V2




 =






IΦ

−IΦ − gmV1




 . (3.22)

To solve the matrix equation, the transconductance term from the current vector

is moved to the admittance matrix and then Cramer’s rule is used to solve an

expression for the voltage at node 2. Since the signal source is a pure current

source, it is not possible to directly solve a transfer function as the ratio of the

output and input voltages. However, since
V2

RC

= Iout, it is possible to solve the

ratio of the output and input currents.

A direct application of Cramer’s rule to matrix equation (3.22) leads to the ex-

pression for the node voltage V2:

−IΦRC(1 + jωCπrπ + βF )

(1 + jωCπrπ)

(

1 +
RC

ro
+

RC

rµ
+ jωCµRC

)

+ (1 + jωCµrµ)

(
rπ
rµ

[

1 +
RC

ro

]

+ βF

RC

rµ

) .

After dividing by IΦRC , the transfer function

Io

IΦ
=

−(1 + jωCπrπ + βF )

(1 + jωCπrπ)

(

1 +
RC

ro
+

RC

rµ
+ jωCµRC

)

+ (1 + jωCµrµ)

(
rπ
rµ

[

1 +
RC

ro

]

+ βF

RC

rµ

)

is obtained. The denominator has been written in a compressed form because of

lack of space. The essential thing to learn from here is that the time constants

from all the mixed RC combinations have an effect on the slope and the corner

frequency where the high-frequency attenuation begins.
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Figure 3.48 visualises the effect of the load resistance RC to the high-frequency

cut-off. In this specific configuration, high load resistance values decrease the

bandwidth of the phototransistor, but still the response includes the audio range

even with very high resistance loads. The response curves have been normalised

to a 0 dB amplitude in the passband to focus on the differences in the cut-off

area. The absolute values of the gain are not important in this case, as only the

relative differences between the curve shapes are meaningful.
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Figure 3.48: Frequency response curves with varying RC

3.3.4 Measurements on an optical pickup

The measurement data originally used to analyse the waveforms and amplitude

spectrums of plucked strings in Chapter 2 is reused here to present the true spec-

trum obtained from a typical optical pickup. In the plain string measurements in

section 2.4, the assumed weight function of the pickup was divided away to re-

veal the realistic amplitude spectrum of a typical plucked string. When analysing

these results to investigate the response of an optical pickup, the measurement

data is kept in its original form and the analytical error limits are multiplied with

the weight function of the pickup at the specific location.

The optical device used as a pickup was a photointerrupter switch H21B1; a

component that can be purchased directly from a well equipped electronics store.

The detector area of this specific interrupter switch has a diameter of only 1 mm,
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so the width will not cause any unnecessary cut-off for any meaningful upper

partial. The interrupter switch was hooked up to an external circuit, where it

was connected as shown in Figure 2.24. The output signal was taken from the

emitter of the phototransistor and measured with a digital storage oscilloscope.

Measurements were made by plucking the string at different locations and also

from near both end supports. The measurement platform shown in Figure 2.23

was used to support the string, and the optical interrupter switch was placed

relatively close to the end support. The interrupter switch was mounted with

screws to the measurement platform and it was supported underneath to the

suitable height with respect to the string. This mounting orientation forced the

plucking direction to be vertical, although horizontal plucks could be imitated to

some degree as vertical plucks by turning the platform 90 degrees sideways.

The theoretical results related to the signal obtained from an optical pickup are

derived in equation (2.35) with the additional term describing the pickup weight-

ing taken from section 3.1. Figure 3.49 compares the calculated theoretical wave-

form to the waveform recorded from the first few periods of the string’s motion.

The string was plucked at
L

6
and the pickup was placed at 3 cm’s distance from

the right end support shown in Figure 2.23. The reason for concentrating on the

first periods after the pluck is to avoid the uneven decay of upper partials, which

causes the measured waveforms to deviate from the theoretical ones.

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.0
0.5
1.0
1.5
2.0
2.5

0 5 10 15 20 25 30 35 40 45

vo
lt

ag
e

[V
]

time [ms]

theoretical

measured

Figure 3.49: The measured and theoretical waveforms from a pluck at
L

6
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The waveforms in Figure 3.49 are quite similar, which proves reasonably well

that the analytical model is sufficient enough to forecast the output signal of an

optical pickup. The plucking position is sensed adequately as can be seen by

the matching duty cycles between the theoretical expectation and the measured

signal.

Figure 3.50 compares the waveforms from the experimentally most obvious pluck

at the middle of the string. In this case the duty cycle of the measured waveform

is expected to be fifty-fifty, which it actually is. The measurement results from the
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Figure 3.50: The measured and theoretical waveforms from a pluck at
L

2

middle pluck show a good correspondence to the theoretical waveform, although

the edges of the square pulses in the measured waveform are a little bit curved.

The curviness indicates that some of the higher upper partials are either missing

due to insufficient dynamics of the measurement setup or that the stiffness effects

have covered some of the nodes of the higher upper partials, not allowing them

to vibrate freely.

Figure 3.51 shows an example of the amplitude spectrum obtained using an op-

tical pickup. The plucking position p =
L

6
has been chosen so that the spectrum

would be comparable to some extent to the spectrum measured from the mag-

netic pickup. On the other hand, in this measurement the optical pickup was

placed at 8 mm’s distance from the left boundary that clamped the string firmly.
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Therefore, as the magnetic pickup was placed at 5 cm from the left end support,

there is a big difference in the placement of the pickup.
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Figure 3.51: The amplitude spectrum resulting from a pluck at p =
L

6

The amplitudes of the upper partials are in agreement with the theoretical error

limits, although the higher harmonics have a smaller amplitude than expected.

The amplitude spectrum indicates clearly that even when the optical pickup is

so close to the boundary, the harmonic content is still clearly more richer in the

magnetic pickup. The n2 term in the denominator in equation (2.35) is orderly at-

tenuating the upper partial response of the displacement sensing optical pickup

and eventually cutting off the higher harmonics from the spectrum. The mag-

netic pickup can generate waveforms where the second or the third component

have the highest amplitude in the initial spectrum, but for optical pickups the

fundamental is always the most dominant.

The extreme case, where the plucking position is p =
L

30
, is plotted in Figure

3.52 to show a realistic maximum upper partial content obtained with an optical

pickup. Unfortunately the measurement data turned out to be out of range with

respect to the error limits, but the decreasing trend of the upper partials is still

valid to give realistic information on the spectral content.

The measurement data in Figure 3.52 is the same where the spectrum for the

string vibration was calculated. From this viewpoint, where the effect of the
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Figure 3.52: Plucking position at p =
L

30

pickup location has not been divided away, it is clearly seen that the pluck has

not been a successful one. Basically none of the upper partial amplitudes are

within the error limits and the slight curvature of the sequential amplitudes is

not visible in the plot. If the upper partials are evaluated after the 20th partial,

it is noticed that the node appears already at the 23rd component. This indicates

that the stiffness of the string this close to the end of the string is so strong that

the exact plucking position is somewhat obscured. It is not very likely that there

would have been such a large error in the plucking position, since the 23rd node

is at 26 mm from the ’origin’ and the 30th node is at 20 mm’s distance.

3.4 Piezoelectric pickups

Piezoelectric pickups are typically used to electrify acoustic guitars. There are

many different designs of piezoelectric pickups available, the most common be-

ing an under-saddle mounted pickup, which can also be used in electric guitars.

To sense the force of the string at the bridge of a guitar is the most reasonable

solution to utilise the piezoelectric transducer because the theoretical modelling

and analysis can be carried out relatively easily, as seen in section 2.2.4. Figure

3.53 shows a schematical view of how the piezoelectric pickup is mounted under

the saddle, which supports the strings in the bridge of the guitar.
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Figure 3.53: Under-saddle installation of a piezoelectric transducer

Some commercially available piezoelectric pickups are intended to be mounted

in direct contact on the top or bottom side of the soundboard surface to be

used more like a regular piezoelectric accelerometer. Since the soundboard of

an acoustic guitar has resonance peaks at several locations for different frequen-

cies, it might be difficult to find a suitable mounting location if linear operation

is desired. The analysis of the properties of these seismic pickups would concern

only acoustic guitars, which is out the scope of this book. However, the general

principles of the under-saddle piezoelectric pickup are also applicable for these

surface mounting solutions.

3.4.1 The piezoelectric effect

Piezoelectric pickups rely on the special properties of certain materials that charge

up electrically due to deformation of the material under external stress. The

piezoelectric effect was discovered by Jacques and Pierre Curie already back in

1880. To realise the piezoelectric effect, a mechanical force is applied to a piece

of material having a certain crystal atomic structure. Under the influence of an

external force, the material becomes electrically polarised and the degree of po-

larisation is proportional to the applied force. This process is also reversible.

In the inverse piezoelectric effect, a material exposed to an external electric field

changes its shape according to the applied voltage.

Figures 3.54 and 3.55 illustrate the fundamental properties of the piezoelectric

effect. The reversible dualism of force and voltage is evident. From the figures,

one can imagine either a force to be applied and the voltage measured or vice

versa. A steady force applied in an equilibrium state is a special case where the

output voltage of the piezo element is zero, as shown in Figure 3.54. [53, p.

2–4] [54, ch. 2]
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Figure 3.54: Voltage parallel to piezoelectric polarisation
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Figure 3.55: Voltage perpendicular to piezoelectric polarisation

In the guitar pickup application, the piezoelectric transducer is used as a force

sensor that transforms the applied mechanical forces into an electrical signal.

3.4.2 A piezoelectric transducer as a signal source

In the under-saddle implementation, the piezoelectric pickup is used as a fixed-

reference transducer where one terminal of the transducer is attached to a point

that is fixed in space (bridge) and the other terminal is attached mechanically

to the point whose force or acceleration is to be measured (saddle). When the

piezoelectric pickup is placed under the saddle, it mainly experiences a dynamic

compressional force as the string vibrates, but some shear forces are also evi-

dently present in the horizontally polarised motion of the string. Figure 3.56

illustrates the basic situation where a piezoelectric transducer is under a direct
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force of compression. This simple model is used as the foundation for further

analysis.

~Ffree position loading position

∆d

Vout

d

q+ q+ q+ q+ q+ q+ q+ q+

q− q− q− q− q− q− q− q−

Figure 3.56: Deformation of a piezo element between conducting plates

When external forces affect the piezoelectric crystal, the charges inside the crystal

momentarily lose balance and a net surface charge appears on top of the crystal.

The parallel metal plates are there to collect the surface charge of the crystal

using a capacitive charging process.

For the piezoelectric pickup to be trusted as a linear transducer, the issues of

linearity need to be analysed with respect to variations in force magnitude and

frequency, since both of these have to have linear dependency on the generated

electrical signal. In this context, the focus of the analysis is to examine the piezo-

electric transducer as a force sensor where the signal is taken in at the mechanical

terminals of the sensor and the output is taken from the electrical terminals.

On a circuit level the piezoelectric transducer is modelled as a mixture of me-

chanical and electrical components. The equivalent electromechanical model is

drawn in Figure 3.57, where the mechanical and the electrical parts of the piezo-

electric transducer are coupled together via an electromechanical transformer.

The transformer has a transform ratio of N , which carries the units of volts per

newton. The transformer is intended to be understood as an ideal transformer,

which only does a mathematical transformation of physical quantities as

V1 =
N

1
F2 and i1 =

1

N
c2,

where the subscripts refer to the primary and secondary side of the transformer.

The practical idea is that voltage comes out from the primary side because of
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force input, and velocity comes out from the secondary side because of current

input.

R

C

k

m

FV i c

N : 1
electrical
terminals

mechanical
terminals

Figure 3.57: An electromechanical model of a piezoelectric transducer

The part that couples with external forces at the mechanical terminals is com-

posed of electromechanical analogues as mass m and mechanical stiffness k,

which is measured in the units of newtons per meter. The stiffness in this context

is the same as the familiar spring constant k. The impedances of the mechanical

elements are jωm for the ’mass-inductor’ and
k

jω
for the ’spring-capacitor’. The

quantity c that circulates around the mechanical circuit is velocity, which is mea-

sured as meters per second. Clearly the mechanical part is formed from elements

that will lead to resonance effects in a certain frequency range.

To clarify the reasoning behind the electromechanical analogues, a simple expla-

nation can be given based on the equivalent units of power in equation

V i = Fc =

[
kg · m2

s3

]

, (3.23)

where V is voltage, i current, F force and c velocity. From this equation it is

possible to make two different choices for the electromechanical quantity pairs;

voltage and force are quite obvious pairs and this is the preferred choice, but it

is also possible, and sometimes even necessary, to choose velocity to pair with

voltage and current with force.

When piezoelectric transducers are concerned, it is better to pair voltage with

force, since both represent some sort of a potential and relate to energy in a

similar fashion. After this decision from equation (3.23), the analogue pair of

current and velocity is automatically obtained to represent the flow-type quanti-

ties. Moreover, since

i =
dq

dt
and c =

dy

dt
, (3.24)

a relation between charge q and displacement y can be identified. Using the def-

initions of inductance and capacitance, the mechanical analogues can be evalu-
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ated from equation (3.23), for example,

V i = L
d2q

dt2
i = Fc = m

d2y

dt2
c (3.25)

connects mass m as the mechanical analogue of inductance L. Table 3.2 collects

the most common electromechanical equivalences resulting from the choice of

pairing voltage with force.

Table 3.2: Electromechanical equivalences when voltage is paired with force

electrical symbol mechanical symbol

charge q displacement y

current i velocity c

inductance L mass m

capacitance C compliance 1/k

resistance R damping coeff. β

voltage V force F

On the electrical side the piezoelectric transducer is basically a capacitor followed

by a very large resistance R, which is seen between the electrical terminals of the

transducer. The capacitance of the capacitor C is, to a good approximation, de-

termined from the basic formula of capacitance between two parallel conducting

plates [55, p. 241]. Although the electrical side does not have a pair of com-

ponents to create resonances at certain frequencies, it still has the capacitor as a

frequency dependent component.

To address the frequency dependent linearity of the mechanical part, it is possible

to derive a transfer function for the right side ’circuit’ of Figure 3.57. Similarity

with the equivalent circuit of the magnetic pickup is evident, so the transfer

function is expected to be in the same form. Going around the velocity loop in

Figure 3.57 leads to the force equation

m
dc

dt
+ k

∫

c dt = F (t), (3.26)

which in the Laplace domain is written as
(

ms+
k

s

)

c = F (s),

from where

c(s) =
F (s)

ms+
k

s

.
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The output force at the terminals of the electromechanical transformer is the

force over the stiffness-related capacitor. This force is written as

Fout = c(s)
k

s
=

F (s)
k

m

s2 +
k

m

,

which leads to the transfer function

Fout

Fin

=
ω2
0

s2 + ω2
0

, (3.27)

where ω2
0 =

k

m
, indicating the resonance frequency. The result has the same

form as in the case of the magnetic pickup, only the resistive term is now miss-

ing. Since the format of the transfer function is the same, then for a sinusoidal

frequency sweep the response curves obtained from equation (3.27) are exactly

the same as shown in Figure 3.25. However, the real world piezoelectric trans-

ducers are not that ideal, and the actual approximate frequency response curve

looks something like shown in Figure 3.58.
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Figure 3.58: The linear region of a piezoelectric transducing element. Figure is

redrawn with adaptations from reference [56].

Compared to the theoretical curves, the actual linear part is reduced by a limited

low-frequency response and some excessive nonlinearities near the resonance

frequency. Luckily there is still a relatively wide linear region in the response
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curve, which indicates that the piezo element can be approximately used as a

linear transducer as far as the frequency response is concerned. The resonance

frequencies of piezoelectric transducers are typically in the ultrasonic frequency

range so that normal audio frequencies are not affected by the nonlinearities of

the resonance region.

The linearity between the magnitude of the input force and the resulting electric

signal is not that evidently proved. However, since the whole network itself is a

linear circuit model, and considering the fact that the stiffness related term is the

dominating mechanical impedance at audio frequencies, it follows from equation

(3.26) that

kx = F ⇒ x =
1

k
F. (3.28)

Multiplication of equation (3.28) with the inverse of the electromechanical trans-

formation ratio N gives
1

N
x =

1

Nk
F,

and simplification leads to relation

q =
1

Nk
F = CF,

where q is the electric charge and C reflects capacitance with corresponding

units, but this should not be confused with the capacitor noted with C in the

electromechanical circuit of Figure 3.57. Since the quotient
q

C
equals voltage,

there is now a direct relation between the input force and the electromotive

force generated to the primary coils of the electromechanical transformer.

Obviously, because expression for electric current i is obtained by differentiating

the charge q with respect to time, the current is directly related to the changes in

the applied force
dq

dt
= i =

1

Nk

dF

dt
. (3.29)

Equation (3.29) clearly indicates that the piezoelectric transducer cannot be used

to measure static forces since the current depends on the changes in the applied

force. This is also why the piezoelectric force sensor is preferred to be modelled

as a current source in the electrical domain.

3.4.3 A piezoelectric pickup as part of an electric circuit

Figure 3.59 shows the two possible equivalent circuits for a piezoelectric sen-

sor as seen in the electrical domain. The signal source in Figure 3.59a having

the magnitude

∣
∣
∣
∣

Nkc

jω

∣
∣
∣
∣

indicates the voltage obtained from the electromechanical
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transformer in Figure 3.57. The current source model shown in Figure 3.59b

emphasises the piezoelectric transducer as a source of charge, which under a

constantly varying force becomes a current source with a magnitude that equals

the rate of change of the charge.

Nkc

jω

C

R Vout

(a) Voltage source model

dq

dt
C R Vout

(b) Current source model

Figure 3.59: Force sensor equivalent circuits using voltage source and current source

As a good approximation, the electrical capacitance C of a force sensor having

the structure as shown in Figure 3.56 is evaluated from the geometry of the trans-

ducer, where an insulation is separating two conductive plates. The capacitance

is evaluated with the piezoelectric crystal in an unloaded state (air pressure as

the only load), using the well-known formula

C =
ǫǫ0A

d

for a plate capacitor. Variable A defines the surface area of each plate and d refers

to the distance between the plates as shown in Figure 3.56. The constant ǫ refers

to the material dependent value of relative permittivity and ǫ0 is the permittivity

of air.

Manufacturers of piezoelectric pickups do not bother to document the capaci-

tance values of their products into any marketing material or datasheet, so the

information needs to be iterated from unreliable sources in the Internet. A good

guess appears to be around 500− 1000 pF for under-saddle piezoelectric pickups.

This capacitance value range can be used to simulate the piezoelectric pickup.

The internal resistance R of the piezo crystal is so huge that in many cases it can

be neglected alltogether. If the resistance is considered to be infinite, the output

voltage Vout seen in the equivalent circuits is basically the voltage of the capacitor

with some charge q:

Vout =
q

C
=

1

Nk

F

C
.
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Output voltage Vout refers to the actual voltage measured from the electrical out-

put terminal of the force sensor, and it seems to be directly proportional to the

applied force F . This proportionality can be analysed more generally from the

equivalent circuits to see the effect of the resistance R. Direct transformation to

the Laplace s domain gives the voltage equation

Vout =
R

1

sC

R +
1

sC

i =
R

1 + sCR
i,

and when using equation (3.29) a very interesting transfer function

Vout

F
=

sR
1

Nk
1 + sCR

=
sCR

1

kNC
1 + sCR

(3.30)

is obtained to link the output voltage to the input force. A time constant RC can

be identified and the quotient
1

kNC
defines a static sensitivity factor of the force

sensor. As the factor
1

kN
was noted to have the units of capacitance, the static

sensitivity factor is a unitless quantity, which it needs to be to keep the derived

equations sensible. [57, p. 585]

By taking the value of R very large in equation (3.30), a direct proportionality

between the input force and output voltage is retained. However, if the resistance

is less than 1010 Ω, then it starts to have a considerable effect on the frequency

response: instead of a linear response, the relation between the input force and

the output voltage becomes frequency dependent.

If the piezoelectric force sensor is used as a guitar pickup, it will be connected in

parallel with a tone control resistance or an amplifier with finite input impedance

ZL, which is seen as a load from the perspective of the piezo element. Since

the input impedance ZL of the following circuit stage is parallel to R, the total

impedance will equal ZL because in practice ZL will always be much smaller than

the internal resistance R of the piezo crystal.

Figure 3.60 visualises the magnitude ratio between the input force and the out-

put voltage assuming that the input force is kept at constant magnitude at all

frequencies. Clearly only a 10 MΩ resistance seems to be sufficient to give a

steady frequency response in the audio range. A capacitor value of 500 pF was

used when calculating the gain curves. The gain curves in Figure 3.60 are nor-

malised to 0 dB for clarity and they do not give realistic information about the

absolute signal levels obtained from a typical piezoelectric pickup.
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Figure 3.60: The frequency response of a piezoelectric pickup with varying load

resistance

Based on the impedance analysis above, the piezoelectric pickup is not ready

to be directly connected to a normal guitar amplifier or tone control circuit be-

cause the relatively low input impedance will distort the frequency response of

the piezoelectric pickup. To isolate the pickup from the following circuit sec-

tions and to make a decent impedance matching, a preamplifier buffer circuit is

needed directly after the piezoelectric pickup. There are several simple pream-

plifier implementations available in the Internet and Figure 3.61 shows one of

them. The presented preamplifier is called a ’quick and dirty piezo preamp’ and

it is designed by Francis Deck. The preamplifier circuit is intended to be oper-

ated by a 9 V battery. In a static configuration, resistor R2 self-biases the FET to

a suitable range of operation and resistor R1 determines the input impedance.

Capacitor C1 affects the low-frequency response of the circuit; larger capacitance

values enhance the low-frequency response of the preamplifier stage.

Another good choice in addition to JFET buffers is to use dedicated charge am-

plifiers, basic op-amp circuits, which are presented in general literature on mea-

surement and instrumentation. The reasoning for using a charge amplifier is

obvious, since charge q is used as the current source in the equivalent circuit of

a general piezoelectric transducer.

The small-signal model from a situation where the pickup is connected to the
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2N54861 kΩ

R3

Vin

10 MΩR1 1 kΩR2

10 µF

C1

VDD

10 µF

C2

Vout

Figure 3.61: A preamplifier buffer for a piezoelectric guitar pickup

’quick and dirty’ preamp is shown in Figure 3.62. The current source equivalent

is chosen to represent the piezoelectric pickup and the value of the source is

identified deliberately with the time derivative of charge to link directly to the

time derivative of the input force. The output voltage is taken from node 5,

where one can imagine a load resistance to be connected to represent the input

impedance of a tone control circuit or a guitar amplifier. The resistor R0+1 refers

to the parallel combination of the internal piezo crystal resistance and the resistor

R1 shown in Figure 3.61. Since the internal resistance of the piezo crystal should

be much larger than R1, the effective value of R0+1 is close to 10 MΩ.

C
dq

dt

1

R0+1

2
R3

3

R2

(Vout) 5

C1

4

rd C2

gmvgs

+ −vgs

Figure 3.62: A small-signal model for a piezoelectric guitar pickup + preamp

The matrix equation (3.31) indicates the structure of the linear equations that

need to be solved in order to calculate the frequency response of the combined
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piezoelectric pickup and preamplifier buffer.















Y11 Y12 0 0 0

Y21 Y22 0 0 0

0 Y32 Y33 Y34 Y35

0 Y42 Y43 Y44 0

0 0 Y53 0 Y55















×















V1

V2

V3

V4

V5















=















jωq

0

0

0

0















(3.31)

In the matrix representation the constant current source terms gm(V2 − V3) and

−gm(V2 − V3) from rows 3 and 4 of the current vector have already been trans-

ferred to the admittance matrix. The expressions of the Yij elements in the ad-

mittance matrix are indicated in listing (3.32).

Y11 =
1

R0+1

+
1

R3

+ jωC Y12 = Y21 = − 1

R3

Y22 =
1

R3

Y32 = − µ

rd

Y33 =
1

R2

+
µ+ 1

rd
+ jωC1 Y34 = − 1

rd

Y42 =
µ

rd
Y43 = −µ+ 1

rd

Y44 =
1

rd
+ jωC2 Y35 = Y53 = −jωC1

Y55 = jωC1

(3.32)

For JFETs, there exists the relation

µ = gmrd,

which is equivalent to the equation βF = gmrπ given for bipolar junction transis-

tors. The value for internal drain resistance rd and for the transconductance gm

should always be calculated from the biasing conditions, but a good guess is to

have rd somewhere between a few tens of kilohms and a few hundreds of kilo-

hms [15, p. 426]. In this case the interest is towards the shape of the frequency

response curve. Hence, the actual value of rd is not meaningful, since it mainly

affects the gain of the circuit.

In the matrix equation the charge based current source
dq

dt
has been transformed

into the Laplace domain as sq, from where in case of sinusoidal test signals the

direct substitution of s = jω is valid and shown in the current vector as jωq. This
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way it is possible to obtain the transfer function in the form of output voltage

divided by input force.

To compare the input and output voltages in the preamplifier circuit, the voltages

at nodes 1 and 5 need to be solved. Numerical analysis with Octave results

in the graph shown in Figure 3.63. According to the curves, the preamplifier

buffer preserves the shape of the response curve for any external impedance to

be connected to node 5. No additional gain is obtained since the preamplifier

is in a source follower configuration. On the contrary, the signal attenuates just

like predicted by the theoretical analysis of a source follower circuit.
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Figure 3.63: The frequency response of a piezoelectric pickup with a preamp

It should be questioned whether it is reasonable to include the resistor R1 to fix

the input impedance of the amplifier buffer. If R1 is left out, the impedance is

determined by the parallel connection of the internal JFET input impedance and

the output resistance of the piezoelectric transducer. Both of these resistances

should be an order or two higher than the 10 MΩ resistance.

Resistor R1 has possibly been included to have a known value as the input

impedance, since it is not evident what the actual resistances of the piezo el-

ement and the JFET input are. Without R1 the low-frequency response of the

preamplifier circuit should approach a flat line, which would be good news for

those who want to have the bass tones maximised. On the other hand, the use of

R1 will stabilise the resistance because the linearity of the JFET and piezo crystal
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resistances is not known in detail.

3.4.4 Measurements on a piezoelectric pickup

For measurement purposes, the cheapest possible under-saddle type piezoelectric

pickup was purchased from the local electronics dealer. The same measurement

platform as shown in Figure 2.23 was again utilised, and in this case the piezo-

electric transducer was glued on top of the rightmost end support. Instead of

imitating a realistic under-saddle installation, the piezoelectric pickup was used

as the saddle itself so that the string was resting on top of the piezosensitive area.

In this setup the piezoelectric pickup is used as a true force sensor for measuring

the force generated by the vibrating string at the end support.

The string was set into motion by plucking it in the vertical direction. With this

choice of direction, a vertical force component is generated at the ’saddle’ to

push and pull the string on top of the piezo element. By doing the measurements

this way, the theoretically easiest modelling scheme can be directly compared to

the measurement results. The theoretical equations to calculate the force at the

end support were given in section 2.2.4 and those equations were used to create

reference waveforms to be compared to the measurement results.

A regular steel string was used as the signal source and a digital storage oscil-

loscope was used in the single-shot configuration to record the first few periods

of the string’s vibration sequence. The 10 MΩ input resistance provided by the

oscilloscope measurement probes is adequately large to not cause any frequency

related distortion to the measurement results, since the nominal vibration fre-

quency of the string was approximately 230 Hz.

Figure 3.64 depicts a measured waveform from a vertical pluck at
L

6
. The piezo-

electric pickup was located at L because it was mounted on top of the rightmost

end support. The measured signal is drawn alongside a waveform indicating

the expected outcome of the measurement. The measured waveform matches

very nicely to the theoretical expectation waveform, which was drawn using the

first 20 upper partials from the harmonic spectrum of the string. The theoreti-

cal analysis predicts square pulses with an oscillating top section. The measured

waveform has visible oscillation, which is more dominant than the theory pre-

dicts. Otherwise the duty cycles of the square pulses are in agreement. The

theoretical waveform has not been frequency synced with the measured string,

so therefore there is a small frequency difference between the theoretical and
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Figure 3.64: The measured and theoretical waveforms from a pluck at
L

6

measured waveforms.

Figure 3.65 presents the theoretically most obvious pluck at the middle of the

string. In this case, the duty cycle of the waveform is expected to be fifty-fifty,

which it approximately is. This is a relatively successful measurement with a

good correspondence to the theoretical waveform.

The initial deflection and release process of the string creates an additional tran-

sient force which gradually fades away. This effect was most noticeable when

plucking from the middle of the string and it is seems as though the average

potential of the pulse train is gradually lifting upwards.

The shape of the waveform resulting from the force measurement at the end

support is almost the same as the waveforms obtained by measuring with an

optical pickup nearby the end support. The only visual difference is the amount

of ripple at the top of the square pulses. Because of this, it is reasonable to expect

similar spectrums from the piezo pickup measurements.

Theoretical analysis reveals that the expected spectrums resulting from measur-

ing the force on top of the end support and measuring the shadow of the string

in the vicinity of the end support should give the same magnitude spectrum for

the most significant upper partials. There are differences only at the high end of
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Figure 3.65: The measured and theoretical waveforms from a pluck at
L

2

the upper partials, which is almost impossible to verify by measurements.

Figure 3.66 shows a spectrum that is calculated from the waveform shown in

Figure 3.64. Considering the large amount of ripple in the measured waveforms,
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Figure 3.66: The measured and theoretical spectrums from a pluck at
L

6
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the amplitudes of the upper partials follow nicely the theoretically calculated

amplitudes. Apparently the excessive ripple was caused by the hyperactive 9th

upper partial, which is clearly stronger than the theory would expect. The reason

for this behaviour was not investigated any further, but possibly the measurement

setup had some resonances at that frequency range.

Figure 3.67 illustrates the difference in the waveforms between the vertical and

horizontal plucking directions. When the force on top of the piezo element is

due to parallel motion instead of perpendicular motion, the waveform is a not

that distinct square wave but it is still faintly identifiable as a centre pluck from

the 50 percent duty cycle.
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Figure 3.67: Comparing vertical and horizontal plucks at
L

2
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Chapter

4

Guitar tone control circuits

On the journey through the signal path of the electric guitar, after the transducer

stage there comes a tone control stage. The tone control circuit is a potentiometer

controlled filter which can be used to cut out certain frequency bands from the

output signal of the pickup. Usually the tone control circuit is a very basic first

order low-pass filter that just attenuates high frequencies as a function of an

adjustable potentiometer resistance.

Nothing prevents from using complex filter structures as the tone control section

of the guitar, but this is seldom necessary since the amplifier normally has its

own tone control circuitry as a built-in feature. Another fact of the matter is that

the more components are added to the passive network following the pickup, the

more the guitar’s output signal will be attenuated. In every practical design it is

always better to keep things as simple as possible and minimise the amount of

components to save unnecessary costs.

4.1 A basic tone control circuit

According to Anderton [42, p. 75], the most basic tone control circuit used in

electric guitars is similar to the circuit in Figure 4.1. This kind of tone control

solution is normally installed by default to all affordable standard type guitars

usually bought by beginner musicians. In Figure 4.1 the tone control stage has

been ’soldered’ to the equivalent circuit model of the pickup. The pickup char-

acteristics are defined by resistance RP , inductance LP and capacitance CP . The

tone control stage is parallel to the pickup and it is represented by a series con-

nection of resistance RT and capacitance CT . For the sake of completeness, the

volume control potentiometer RV has also been included in this model.
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LP

ε

RP

CP

RT

CT RV

Vout

Figure 4.1: A magnetic pickup with a standard tone and volume control circuit

In this tone control circuit, potentiometer RT controls the amount of signal cur-

rent that is directed to ground through capacitor CT . If the resistance RT is large,

most of the current will travel towards the volume control stage. When the resis-

tance RT is decreased, more current can escape to ground via the tone capacitor.

The capacitor, on the other hand, acts as a smaller resistance for high frequencies

than for low frequencies, and therefore the high frequencies are attenuated more

than the low frequencies.

Typical resistance values for the tone and volume potentiometers are 250 kΩ −
500 kΩ, and the value of the tone capacitor is usually between 0.01µF−0.1µF. In

audio applications, logarithmic potentiometers are almost always used as the vol-

ume control potentiometers, whereas the type of the tone control potentiometer

is chosen according to design. Anderton [42, p. 75] suggests a 250 kΩ poten-

tiometer for RT and a 0.02µF capacitor for CT . These values are something that

can be found from the standard line of guitars with single-coil pickups. Guitars

equipped with more powerful humbucker pickups normally have these values

doubled to

RT = 500 kΩ CT = 0.047× 10−6 F RV = 500 kΩ.

These values are used in this context for further analysis. The value of RT will

be varied throughout its possible range to see how it affects the signal.

The values used to define the pickup characteristics are

RP = 10 kΩ CP = 240× 10−12 F LP = 5H,

thereby presenting a reasonably high impedance pickup with a resonance peak

close to 5 kHz. The value for CP has been tweaked deliberately for these sim-

ulations to reach a 5 kHz resonance because then the effect of the tone control

circuit becomes more clear as it is possible to notice the gradual disappearance

of the pickup’s natural resonance peak when RT is adjusted.
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To be able to use nodal analysis to derive a transfer function for the tone con-

trol circuit, an equivalent small-signal model is redrawn in Figure 4.2, where

the source of the electromotive force of the pickup has been transformed into a

current source and the volume potentiometer has been divided in two parts, RV 1

and RV 2. In the simulations, the volume has been set to the middle position, i.e.

RV 1 = RV 2 =
RV

2
, and the effect of varying RT is examined.

RP

1

Vin

RP

LP

2

CP

RT

CT

RV 1 3 (Vout)

RV 2

Figure 4.2: The tone control network redrawn for nodal analysis

From the redrawn small-signal model of the tone control circuit, it is easy to di-

rectly write down the matrix equation describing the circuit. Because the circuit

has three nodes plus one common ground, the matrix equation will have three

rows representing the three linearly independent equations derived from Figure

4.2.
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+
1
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− 1
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V1
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=













Vin

RP

0

0













The transfer function of the circuit can be evaluated from the matrix equation

using Cramer’s rule. Since the output signal is taken from node 3 of the small-

signal model, column number 3 in the numerator determinant is replaced by

the current vector to solve the node voltage V3. After some lengthy algebraic

festivities, the transfer function has evolved into the form

H(s) =
V3

Vin

=
1 + sCTRT

As3 + Bs2 + Cs+D
,

where the coefficients

A =

(

1 +
RV 1

RV 2

)

CPLPCTRT
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B =

(

1 +
RV 1

RV 2

)

(CPLP + CTLP + CPRPCTRT ) + CTLP
RT

RV 2

C =

(

1 +
RV 1

RV 2

)

(CTRP + CPRP + CTRT ) + CTRT
RP

RV 2

+
LP

RV 2

D =
RV 1

RV 2

+
RP

RV 2

+ 1.

The simulation results of the circuit presented in Figure 4.3 reveal that the tone

control circuitry with the chosen component values clearly attenuates the reso-

nance peak in the pickup response curve already at the maximum value of RT .

The high-frequency roll-off after the −3 dB point is comparable to a second or-

der low-pass filter because the first order comes from the pickup stage and the

second order is due to the tone control stage.

If the resonance peak of the pickup had been closer to 10 kHz, it would have

faded away almost completely due to the tone control section. It is therefore ob-

vious that the impedance characteristics of the pickup must be considered care-

fully when designing the tone control circuit. Sensible design would allow the

natural resonance peak of the pickup to be audible at least with maximum band-

width of the low-pass filter. If the resonance peak of the pickup is located higher

than 5 kHz in this example, the tone control circuit should be modified to raise

the cut-off frequency of the low-pass filter to preserve the resonance peak. Un-

fortunately this setup of RT and CT does not form a decent low-pass filter to

be able to efficiently modify the cut-off frequency at the maximum value of RT .

Changing RT to a 1 MΩ potentiometer helps a little, since then the capacitor CT

does not have much effect when RT is at maximum value.

Trial simulations were also conducted to examine the effect of different volume

potentiometer settings (half, max, min) but this did not cause any noticeable

change in the frequency response. This is good because obviously the volume

control should modify only the volume level and the tone control only the tone

characteristics.

As noted already in the pickup analysis, the frequency of the pickup resonance

peak can be controlled by changing the value of pickup capacitance CP . Addi-

tional capacitance parallel to the pickup lowers the frequency of the resonance

peak, and in connection with the tone control circuit, lowering the resonance

frequency of the pickup enhances the effect of the pickup resonance at certain

frequencies.
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Figure 4.3: The calculated frequency response at the tone section output

What comes to the output impedance of the circuit 4.1, changes in the tone

potentiometer RT affect the output impedance of the guitar as shown in Figure

4.4. The equation from where the impedance curves in Figure 4.4 are drawn is

50

100
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200

250

100 1000 fr 10000

|Z
|[k

Ω
]

frequency [Hz]

RT =500 kΩ

RT =350 kΩ

RT =200 kΩ

RT = 50 kΩ

ZP

Figure 4.4: Impedance curves with a changing value of RT
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ZPTV =

[
ZPZT

ZP + ZT

+RV 1

]

RV 2

ZPZT

ZP + ZT

+RV 1 +RV 2

(4.1)

where the notation ZPTV refers to the common impedance of the pickup, tone

and volume control circuitry. In equation (4.1),

ZP =

1

sCP

(RP + sLP )

1

sCP

+RP + sLP

refers to the impedance of the pickup section and

ZT = RT +
1

sCT

is the impedance of the tone section.

The impedance peak at resonance frequency is preserved for values of RT above

100 kΩ but the height of the peak is considerably smaller compared to the impedance

of the separated pickup stage. At the edges it still follows the impedance curve

of the unconnected pickup, which is drawn as a reference ZP to Figure 4.4.

Similarly, changes in the volume potentiometer RV affect the output impedance

of the guitar as shown in Figure 4.5. When turning down the volume, the total
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Figure 4.5: Impedance curves with changing a value of RV
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impedance will equal the resistance of RV 2, which refers to the part of the volume

control potentiometer that is parallel to the output jack of the guitar. When the

volume is gradually turned louder, the total impedance starts to resemble the

normal impedance curve of the pickup. At least now we know that if someone

wants to play with constant output impedance for all frequencies, just turn down

the volume ... But as the evaluation of the frequency response revealed, the

volume potentiometer will not affect the tone at all. Strange.

As a conclusion, in a normal playing situation where the volume control is nor-

mally turned to full volume (maximum resistance), the output impedance mea-

sured from the output jack of the guitar is a few hundred kilohms in the kilohertz

frequency range. For low fundamental frequencies the impedance is much lower.

The huge impedance peak of the separate pickup section is evened out consider-

ably by the tone and volume control section.

4.2 Modified tone control circuits

The basic tone control circuit in Figure 4.1 can be extended to offer more variable

control with relatively minor modifications. The controllability increases by one

dimension by adding one capacitor to the circuit. The solution presented in Fig-

ure 4.6 places the additional capacitor along with the tone control potentiome-

ter, and this way it activates the unused second branch of potentiometer RT .

Suggested values for the two capacitors are 0.01µF for one and 0.02µF − 0.05µF

RP

1

Vin

RP

LP

2

CP

RT1 RT2

CT1 CT2

RV 1 3 (Vout)

RV 2

Figure 4.6: The modified tone control network for nodal analysis

for the other one, as given by Anderton [42, p. 75]. The ton control potentiome-

ter is recommended as a linear 500 kΩ pot, but 250 kΩ is sufficient enough as

well. For this analysis, the capacitor values were chosen as CT1 = 0.047µF and

CT2 = 0.01µF. Other component values are the same as in the analysis of the

basic tone control circuit, which was presented in Figure 4.1.
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The matrix equation derived from the small-signal model of the modified tone

control circuit of Figure 4.6 is














1

RP

+
1

sLP

− 1

sLP

0

− 1

sLP

1

sLP

+ sCP +
sCT1

1 + sCT1RT1
+

sCT2

1 + sCT2RT2
+

1

RV 1
− 1
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0 − 1

RV 1

1

RV 1
+

1

RV 2














×












V1

V2

V3












=













Vin

RP

0

0













.

An evaluation of the Cramer’s determinants to solve the voltage at node 3 leads

to the transfer function

H(s) =
V3

Vin

=
(1 + sCT1RT1)(1 + sCT2RT2)

As4 + Bs3 + Cs2 +Ds+ E
,

where the coefficients

A =

(

1 +
RV 1

RV 2

)

CPLPCT1RT1CT2RT2

B =

(

1 +
RV 1

RV 2

)

(CPLPCT1RT1 + CPLPCT2RT2 + CT2LPCT1RT1+

CT1LPCT2RT2 + CPRPCT1RT1CT2RT2) + CT1RT1CT2RT2
LP

RV 2

C =

(

1 +
RV 1

RV 2

)

(CPLP + CT1LP + CPRPCT1RT1 + CPRPCT2RT2+

CT2RPCT1RT1 + CT1RPCT2RT2 + CT1RT1CT2RT2)+

CT1LP
RT1

RV 2

+ CT2LP
RT2

RV 2

+ CT1RT1CT2RT2
RP

RV 2

D =

(

1 +
RV 1

RV 2

)

(CT1RP + CPRP + CT1RT1 + CT2RP + CT2RT2)+

CT1RT1
RP

RV 2

+ CT2RT2
RP

RV 2

+
LP

RV 2

E =
RV 1

RV 2

+
RP

RV 2

+ 1.

The addition of one component of complex impedance increased the degree of

the denominator of the transfer function by one to the fourth degree. The sim-

ulation results for varied values of potentiometer RT are depicted in Figure 4.7.
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Figure 4.7: Frequency response curves of the modified tone control section

According to the simulation results, this solution does not offer anything dras-

tically new compared to the basic tone control circuit. On the contrary, this

modification effectively eats away the rest of the pickup’s resonance peak, but at

least some small changes of tone control can be achieved with this approach.

The idea of the circuit is that the neutral setting of the tone potentiometer is now

at the middle position. Turning the potentiometer towards both extremes will

increase the attenuation of the high frequencies, but now there are basically two

different tone potentiometers combined into the one single tone control knob.

The usefulness of this implementation should be questioned because it only gives

two approximately similar low-pass filter functions to use. However, this is only

how it looks like as a diagram, the ear might be more sensitive to notice the slight

difference.

As another slight modification to the basic tone control circuit of section 4.1,

Figure 4.8 adds again one capacitor to the circuit, this time in direct contact

with the volume control potentiometer. The circuit is drawn directly as a small-

signal model where the volume potentiometer has been divided into two sepa-

rate resistors. The pickup is modelled as a current source so that direct use of

nodal analysis would be possible. The idea of this circuit is to enhance the high-

frequency portion of the output with respect to the low-frequency range. As the

volume is turned down, the low frequencies are attenuated more than the high
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RP

1

Vin

RP

LP

2

CP

RT

CT

RV 1 3 (Vout)

CV

RV 2

Figure 4.8: A combined control section for tone and volume

frequencies, which are bypassing the volume control potentiometer through the

additional capacitor.

An application of the nodal analysis method to the small-signal model of Figure

4.8 results in a matrix equation
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sLP

+ sCP +
sCT

1 + sCTRT

+
1

RV 1
+ sCV − 1

RV 1
− sCV

0 − 1

RV 1
− sCV

1

RV 1
+

1

RV 2
+ sCV














×












V1

V2

V3












=













Vin

RP

0

0













.

The output voltage at node 3 is obtained in a similar fashion as in the previous

sections and the transfer function can be solved by dividing the node voltage by

the input voltage Vin. In this case the ratio of output and input voltages as a

function of the Laplace variable s reads

H(s) =
V3

Vin

=
(1 + sCTRT )(1 + sCVRV 1)

As4 + Bs3 + Cs2 +Ds+ E
,

where the coefficients

A = CPCVRV 1LPCTRT

B =

(

1 +
RV 1

RV 2

)

CPLPCTRT + CVLPCTRT
RV 1

RV 2

+

CTLPCVRV 1 + CPLPCVRV 1 + CPRPCVRV 1CTRT

C =

(

1 +
RV 1

RV 2

)

(CPLP + CTLP + CPRPCTRT ) + CTLP
RT

RV 2

+ CVLP
RV 1

RV 2

+

CTRTCVRV 1 + CTRTCVRP
RV 1

RV 2

+ CPRPCVRV 1 + CTRPCVRV 1
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D =

(

1 +
RV 1

RV 2

)

(CTRP + CPRP + CTRT ) + CTRT
RP

RV 2

+

LP

RV 2

+ CVRP
RV 1

RV 2

+ CVRV 1

E =
RV 1

RV 2

+
RP

RV 2

+ 1.

To calculate the frequency response for sinusoidal frequencies, the Laplace vari-

able s in the transfer function is substituted with the complex angular frequency

term jω and the transfer function is evaluated for a range of frequencies. The cal-

culated frequency response of the basic tone control circuit with the capacitively

bypassed volume control potentiometer is presented in Figure 4.9.

−50

−40

−30

−20

−10

0

10

102 103 104 105

m
ag

n
it

u
d
e

of
vo

lt
ag

e
ra

ti
o

[d
B

]

frequency [Hz]

RV 2 =500 kΩ

RV 2 = 50 kΩ

RV 2 = 25 kΩ

RV 2 = 5 kΩ

Figure 4.9: Calculated frequency response of the modified volume control section

The circuit works as expected since according to the response curves in Figure

4.9, low resistance values of the volume potentiometer RV are attenuating the

signal and at the same time cutting out the low frequencies. However, it is diffi-

cult to imagine that this kind of modification would be very useful because the

attenuation at the low frequencies is not that noticeable compared to the total

attenuation of the signal caused by the volume potentiometer. The relative atten-

uation of the low frequencies becomes clear only when the volume potentiometer

is near to its minimum value.

An obvious extension to the basic tone control circuit is to add a high-pass filter
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along with the existing low-pass filter. The solution of Figure 4.10 is adding the

high-pass filter as a separate block, which needs one additional potentiometer to

be added to the guitar’s control knobs.

Clearly this implementation method is not very rational because the need to

add another knob to the guitar would require some drilling of one’s valuable

instrument. A more elegant solution for implementing simultaneous low/high-

pass filtering is presented in the next section.

LP

ε

RP

CP

RTL

CTL RV

CTHRTH

Vout

Figure 4.10: Tone control with an added high-pass filter section

4.3 The ’Big Muff π’ tone control circuit

As already noticed, the tone control system embedded into the guitar is usually

the simplest possible filter circuit. This is understandable because the amplifier

normally has a so-called ’tone stack’, which offers plenty of possibilities for tone

control.

A model of a bit more versatile filter circuit which could be used for guitar tone

control can be borrowed from a popular distortion and sustain effect pedal,

’Big Muff π’. This pedal was manufactured under the brand name of Electro-

Harmonix during the years 1970 – 1984. The tone control section covers only

a small part of the ’Big Muff’ schematic [58] and can be easily extracted as an

independent tone circuit. The tone section isolated from the ’Big Muff’ schematic

is drawn in Figure 4.11.

Clearly the circuit has two branches where one branch is a simple high-pass

filter and the other one is a simple low-pass filter. The subscript B in the circuit

diagram 4.11 refers to the components on the ’bass-cut’ side and the subscript T

refers to the components making the ’treble-cut’. These two filters are connected

together with a potentiometer, which is used to adjust the filtering somewhere in

between the two extremes of the high-pass and low-pass modes.
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Vin

CB0.009 µF

RB100 kΩ

500 kΩ

R0

RT 39 kΩ

CT 0.01 µF

Vout

Figure 4.11: The circuit diagram of the ’Big Muff’ tone section

To analyse the frequency response of the ’Big Muff’ tone control section, the

circuit is redrawn in Figure 4.12 to prepare for writing the circuit in the matrix

form required by the nodal analysis method. The potentiometer has been divided

into two separate resistors and the input voltage is split into two current sources

to feed both input branches of the circuit.

CB

1

sCBVin RB

R1
2

(Vout)

R2

CT

3

RT

Vin

RT

Figure 4.12: The ’Big Muff’ tone control network redrawn for nodal analysis

The circuit diagram of Figure 4.12 is represented by a matrix equation (4.2), from

where all the node voltages and branch currents of the circuit can be solved either

symbolically by using Cramer’s rule or numerically by using Octave or Matlab.
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0

Vin
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(4.2)
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Since the matrix equation for this circuit is not tremendously huge, the transfer

function can be processed as a pen-and-paper calculation using Cramer’s rule to

solve the expression for the output voltage. After solving the voltage at node

2, the explicit expression for the ’Big Muff’ transfer function H(s) =
V2

Vin

as a

function of the Laplace variable s becomes

s2CTCBR2RT + sCB(R1 +R2 +RT ) +
R1

RB

+ 1

s2CTRTCB(R2 +R1) + s

[

CTRT

(

1 +
R1 +R2

RB

)

+ CB(R1 +R2 +RT )

]

+
R1 +R2 +RT

RB

+ 1

To use the transfer function for simulating the frequency response with a sine

wave input signal, one can make the substitution s = jω as explained in section

1.2.6. Suitable component values for practical guitar output signal filtering are

indicated in the ’Big Muff’ schematic 4.11. Simulations with these component

values result in a filter function that changes from a low-pass to a high-pass filter

as a function of the voltage divider resistors R1 and R2. These resistors together

form the potentiometer R0 in Figure 4.11.
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Figure 4.13: Frequency response curves of the ’Big Muff’ tone circuit

The frequency response of the ’Big Muff’ tone control section indicates that the

circuit offers quite symmetric low-pass and high-pass filtering depending on the

resistance of the potentiometer R0. However, when measured in decibels, the

attenuation at the stop-band is not that deep compared to the centre value of
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−6 dB. When the potentiometer is at the middle position, the circuit passes all

frequencies with equal attenuation.

Until now, the ’Big Muff’ tone control section has been analysed as a separate

circuit element without embedding the circuit as a part of a bigger design. In the

original ’Big Muff’ schematic, the tone section is isolated between two amplifier

sections that do not cause a significant impedance loading to the tone control

section. The situation is different if the ’Big Muff’ tone control stage is used in a

guitar. Because the magnetic pickup of an electric guitar is a passive component,

it does not provide ideal input and output impedances to connect to the following

circuit stages. It is therefore expected that the filtering properties of the ’Big Muff’

tone control section will be changed when connected directly after a magnetic

pickup.

Figure 4.14 shows a circuit diagram where the ’Big Muff’ tone control is con-

nected after the equivalent circuit of a magnetic pickup. A voltage divider to

simulate the volume control is also included in the circuit diagram after the ’Big

Muff’ tone control section. The equivalent circuit for nodal analysis purposes

is not drawn separately, since it is easily modified from the schematic of Figure

4.14.

CB

RB

R0

RT

CT

RV 1

RV 2

CP

RP

LP

VS

Figure 4.14: The ’Big Muff’ tone control circuit connected to pickup

Due to the direct connection to the magnetic pickup, the filtering characteristics

of the circuit change quite a lot as indicated in Figure 4.15. The magnetic pickup

seems to add in its low-pass characteristics so that the high-frequency cut-off

of the whole circuit combination is visibly increased. Otherwise at the low fre-

quencies the circuit behaves as the separated ’Big Muff’ circuit. To enhance the
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functionality of the tone control, it should be isolated between two amplifier sec-

tions as in the original ’Big Muff’ design. This would require battery operated

active electronics to be mounted onto the guitar, which is not a tempting idea.
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Figure 4.15: Frequency response curves of the ’Big Muff’ tone control circuit when

connected to the pickup

4.4 Amplifier tone controls for guitar mounting

A random assortment of different guitar amplifier tone control circuits is pre-

sented here in the light that the separated tone control sections could be used

as the guitar’s tone control system. In the following analysis, the selected tone

control circuits are taken through a frequency response simulation in SPICE to

visualise the control properties of the circuits. This section therefore offers an

overview of different tone control solutions used in commercial designs. The in-

put voltage to the circuits is taken directly from an ideal voltage source, which

means that if these circuits are built after the magnetic pickup on the guitar side,

their filtering characteristics are bound to change. This was the case with the

’Big Muff’ tone control presented in the previous section.

Some of the old classic amplifiers have been so simple that tone control circuits

consisting of only one potentiometer have been designed. One of these ’one-tone-

pot’ guitar amplifiers is a small ’Moonlight’ tube amplifier designed by Simcha
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Delft. The schematic of this amplifier have been published as a do-it-yourself

project and it is not to be taken as a commercial amplifier. The tone control

section used in ’Moonlight’ has been extracted to Figure 4.16. In this circuit

diagram, potentiometer RT is used to control the tone and potentiometer RV is

only used to control the volume. The circuit has many similarities with the basic

guitar tone control circuit. From this perspective, it could be directly tested as a

guitar tone control system.

Vin

R1220 kΩ R2 470 kΩ

500 kΩ RT

C1

560 pF

RV 500 kΩR4270 kΩ

Vout

Figure 4.16: The tone control circuit of the ’Moonlight’ amplifier

The frequency response curves as a function of the tone potentiometer RT of

the ’Moonlight’ tone control section are drawn in Figure 4.17. The circuit seems

to be a basic low-pass filter, but at the other end of the scale the circuit has

the ability to change itself to a state of slight high-frequency boost. Clearly this

tone control solution has a more variable frequency response than the most basic

tone control circuit in an electric guitar. However, the circuit seems to cause

significant attenuation to the signal, which is not good when considering the low

signal levels obtained from a magnetic pickup.

Figure 4.18 shows a so-called ’Baxandall’ tone control circuit, which is a general

design commonly used in several audio amplifier implementations. The circuit

has been published in a magazine article [59] in 1949 by E. J. James, but a

feasible implementation of this circuit was given by P. J. Baxandall [60] a few

years later. This implementation uses two tone control potentiometers, the other

for bass control (RB) and the other for treble control (RT ). The output volt-

age is taken between the two potentiometers. The limiting cases of bass-cut and

treble-cut in the frequency response of the ’Baxandall’ tone control section are

depicted in Figure 4.19. The tone control limits are simulated having the other
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Figure 4.17: Moonlight frequency response curves with a changing value of RT

Vin

R1100 kΩ
C1

470 pF

500 kΩ RB

4700 pF

C2

R210 kΩ

R3

180 kΩ

330 pFC3

500 kΩRT

3300 pFC4

Vout

Figure 4.18: The Baxandall tone control circuit

potentiometer at a limiting position while the other is at the middle position.

The attenuation provided by the ’Baxandall’ circuit in the bass-cut and treble-cut

modes is much more effective compared to the single-potentiometer solutions

of ’Moonlight’ and ’Big Muff’. The response curves are also reasonably symmet-

ric around the ’notch’ frequency when examining the frequency response in the

logarithmic scale.
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Figure 4.19: Baxandall frequency response curves with potentiometers RB and RT

at the middle, bass-cut and treble-cut positions

The schematic in Figure 4.20 shows the tone control section of an old Fender

Pro 6G5 amplifier. This implementation is relatively similar to the ’Baxandall’

tone control section but it is implemented using less components. The two po-

tentiometers are separated for controlling bass RB and treble RT .

Vin

C1

250 pF

R1100 kΩ RT 250 kΩ

Vout

250 kΩ RB

C20.01 µF

R210 kΩ

Figure 4.20: The Fender Pro 6G5 tone control circuit

The limiting cases of bass-cut and treble-cut in the frequency response of the
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Fender Pro 6G5 tone control section are depicted in Figure 4.21. The tone con-

trol limits are simulated having one potentiometer at a limiting position while

the other one is at the middle position. The treble-cut and the bass-cut response

curves cross very symmetrically at around 1 kHz and the middle position set-

ting of both potentiometers gives a small notch filter kind of a response. If the

two potentiometers are simultaneously in extreme positions, a nice band-pass

filter response is obtained. Similar response curves were also achieved with one

potentiometer in the ’Big-Muff’ implementation.
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Figure 4.21: Fender Pro 6G5 frequency response curves with potentiometers RB

and RT at the middle, bass-cut and treble-cut positions
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Chapter

5

Guitar cables

The majority of technical solutions in every sector of industry use cables to carry

signals between electrical devices and to connect different electrical interfaces.

In general, cables are electric components which can be described by common

mathematical models and equivalent circuits. The term lumped element model in

the context of cables and transmission lines in general is used to indicate that the

model is constructed from a group of small identical elements.

As guitar accessories, cables are mostly annoying. They are always laying around

on the floor at the players’ feet trying to get them to stumble and injured. After

a gig, the maintenance crew will get tennis elbows from the effort of sorting out

a truckload of cables to neat and tidy rolls. Ever so often, the cables decide to

break a wire and leave for early retirement. But does anyone really know how

much cables really affect the tone and what are the properties of the cables that

need to be looked out for to get that killer tone? Read on and find out what is

inside a basic instrument cable and how to model it mathematically.

5.1 The general transmission line theory

Figure 5.1 describes a general equivalent model for a transmission line, com-

monly known as a cable. A mathematical simulation model divides the cable

into small pieces of length δx, so that a sum of these small pieces eventually

builds up the whole cable. Each individual piece consists of inductance L′, resis-

tance R′, capacitance C ′ and conductance G′. All of these units are expressed as

per unit length, meaning that R′δx = R, where R is the resistance of the cable

with length δx. [61, pp. 10–15]
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L′δx R′δx
3

C ′δx

2

1

4

G′δx

δx

L′δx R′δx
3

C ′δx

2

1

4

G′δx

Figure 5.1: An equivalent circuit for a general transmission line

From Figure 5.1, relations for voltage and current can be written as

V (x+ δx, t)− V (x, t) =
∂V

∂x
δx = −R′δxI − L′δx

∂I

∂t
(5.1)

I(x+ δx, t)− I(x, t) =
∂I

∂x
δx = −G′δxV − C ′δx

∂V

∂t
, (5.2)

from where the infinitesimal lengths δx cancel out from both sides. By differenti-

ating the differential equation for voltage with respect to x and the equation for

current with respect to time,

∂

∂x

∂V

∂x
=

∂2V

∂x2
= −R′ ∂I

∂x
− L′ ∂

2I

∂x∂t
(5.3)

∂

∂t

∂I

∂x
=

∂2I

∂x∂t
= −G′∂V

∂t
− C ′∂

2V

∂2t
. (5.4)

When substituting equations (5.4) and (5.2) into equation (5.3), a general partial

differential equation to describe an infinitesimal piece of a transmission line is

obtained in the form

∂2V

∂x2
= R′G′V + (R′C ′ +G′L′)

∂V

∂t
+ L′C ′∂

2V

∂2t
. (5.5)

It is not relevant to start solving this equation since there are so many different

possibilities to choose for special initial and boundary conditions. However, it

is possible to analyse equation (5.5) in the frequency domain by applying the

Laplace transform to equation (5.5) with respect to time [11, pp 594–595]. Tak-

ing the transform first from the left side of the equation gives

L
{
∂2V (x, t)

∂x2

}

=

∞∫

0

e−st∂
2V (x, t)

∂x2
dt =

∂2

∂x2

∞∫

0

e−stV (x, t)dt =

∂2

∂x2
L{V (x, t)} =

∂2

∂x2
V (x, s),
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assuming that it is allowed to change the order of integration and differentiation.

For the right side of equation (5.5) the Laplace transform yields

R′G′L{V (x, t)}+ (R′C ′ +G′L′)[sL{V (x, t)} − V (x, 0)]+

L′C ′[s2L{V (x, t)} − sV (x, 0)− Vt(x, 0)],

and if the initial conditions V (x, 0) and Vt(x, 0) are taken to be zero, the final

form of the transformed equation reads

∂2V (x, s)

∂x2
= [R′G′ + (R′C ′ +G′L′)s+ L′C ′s2]V (x, s). (5.6)

The standard auxiliary equation defined for second order differential equations

gives the roots

r1,2 = ±
√

(R′ + sL′)(G′ + sC ′),

and this yields a general solution of the form

V (x, s) = Ae−γx + Beγx, (5.7)

where the propagation constant γ =
√

(R′ + sL′)(G′ + sC ′). If the propagational

properties of a sinusoidal signal in the transmission line are investigated, one can

make the substitutions for s = jω and γ =
√

(R′ + jωL′)(G′ + jωC ′).

Impedance is generally defined as the ratio of voltage and current V/I. To reach

the expression of general transmission line impedance, one can also apply the

Laplace transform to equation (5.1), which leads to

∂V (x, s)

∂x
= −(R′ + sL′)I(x, s). (5.8)

By substituting the result (5.7) into (5.8), performing the differentiation of V (x, s)

and embedding the minus sign into the arbitrary (meaning not yet fixed) con-

stants A and B, one has

∂V (x, s)

∂x
= γV (x, s) =

√

(R′ + sL′)(G′ + sC ′)V (x, s) = (R′ + sL′)I(x, s).

The expression for the Laplace domain voltage V (x, s) is now A′e−γx + B′eγx,

where A′ = A and B′ = −B because of the embedding of the minus sign. This

does not have any significance at this point since the constants have not been

defined against reasonable boundary conditions. In any case, the result for the

transmission line impedance Zt reduces to

Zt =
V (x, s)

I(x, s)
=

√

R′ + sL′

G′ + sC ′ ,
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which in the case of sinusoidal signals can be written as

Zt =

√

R′ + jωL′

G′ + jωC ′ . (5.9)

The problem can also be approached from the viewpoint of Maxwell’s equations

∇ • ~D = ρf (5.10)

∇ • ~B = 0 (5.11)

∇× ~E = −∂ ~B

∂t
(5.12)

∇× ~H = ~J +
∂ ~D

∂t
, (5.13)

which can be used to describe almost all phenomena in the field of electromag-

netism. All the field vectors ~D, ~B, ~E and ~H are functions of position ~r and time

t, although this is not explicitly indicated in the following equations.

The equation of motion for an electromagnetic wave can be derived from Maxwell’s

equations. Especially in metal substances the relation ~J = σ ~E holds. By also us-

ing the equalities ~D = ǫǫ0 ~E and ~H = ~B/µµ0, equation (5.13) becomes

1

µµ0

∇× ~B = σ ~E + ǫǫ0
∂ ~E

∂t
. (5.14)

In a similar fashion as in the derivation of transmission line equations, one uses

equations (5.12) and (5.13) as an equation pair to derive the wave impedance

of electromagnetic waves. The wave impedance is defined as the ratio ~E/ ~H by

a common agreement. For starters, the equation (5.12) is differentiated with

respect to location using the relation

∇×∇× ~E = −∇2 ~E +∇(∇ • ~E),

where the latter term is zero because the analysis focuses on conducting materi-

als. Therefore, equation (5.12) becomes

∇×∇× ~E = −∇2 ~E = − ∂

∂t
(∇× ~B),

and with equation (5.14),

∇2 ~E = ǫǫ0µµ0
∂2 ~E

∂t2
+ µµ0σ

∂ ~E

∂t
. (5.15)

Similarly as in the case of transmission line derivation, the Laplace transform of

equation (5.15) yields

∇2 ~E(s) = (ǫǫ0µµ0s
2 + µµ0σs) ~E(s), (5.16)
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where the notation ~E(s) has been used to distinguish the Laplace transformed

vector field L{ ~E} = ~E(s). The auxiliary equation gives the roots

r1,2 = ±
√

sµµ0(sǫǫ0 + σ),

so that the general solution to equation (5.16) is

~E(s) = Ce−λ~r +Deλ~r, (5.17)

where λ =
√

sµµ0(sǫǫ0 + σ).

Applying the Laplace transform also to equation (5.12) gives

∇× ~E(s) = −s ~B(s) = −sµµ0
~H(s),

and after substituting (5.17) and performing the differentiation in a similar fash-

ion as in the case of transmission line analysis,

∇× ~E(s) = λ~E(s) = sµµ0
~H(s).

This gives an expression for the wave impedance as

Zw =
~E

~H
=

√
sµµ0

σ + sǫǫ0
,

and in the case of sinusoidal signals one can set s = jω, so that

Zw =

√

jωµµ0

σ + jωǫǫ0
.

Comparing the expressions of transmission line impedance Zt and electromag-

netic wave impedance Zw implies that C ′ = ǫǫ0 and L′ = µµ0. This follows from

the assumption of a lossless cable, for which the impedance equations reduce to

the forms

Zt =

√

L′

C ′ , Zw =

√
µµ0

ǫǫ0
,

based on the assumption that one can set Zt = Zw. This is a quite significant

result because now if only a general expression Z0 with the parameters of ǫ and

µ is known for some specific type of cable, it is then possible to find out the

inductance per unit length and capacitance per unit length via relations

C ′ =

√
µµ0ǫǫ0

Z0

and L′ = Z0
√
µµ0ǫǫ0.

This obviously leads to the connection

L′ =
µµ0ǫǫ0
C ′ (5.18)

between capacitance and inductance. This equivalence will have practical signif-

icance later.
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5.2 Practical guitar cables

The main transmission line types used to build guitar cables are the coaxial type

and the parallel wire type. Guitar cables that imitate the construction of coaxial

cables are commonly referred to as shielded instrument cables. These cables

are not manufactured according to such official specification standards that the

regular coaxial cables follow but they can still be categorised as high quality

cables. The parallel wire cable cannot even be considered as a serious instrument

cable, but still the poor musician might fall for the temptation of a cheaper priced

cable at the cost of quality. At least the poor author has fallen for it. It is a good

enough cable if only the sound comes through it, isn’t it? Isn’t it really?

5.2.1 A shielded instrument cable

Coaxial cables are often used as measurement cables in laboratories because they

have a proper shielding and a clearly defined characteristic impedance. The gen-

eral construction of a coaxial cable is imitated in musical instrument cables to

produce a rigidly shielded cable that is more flexible and adapts to the terminat-

ing impedances of an assortment of musical accessories. Electric guitar cables

which are referred to as shielded instrument cables have a construction similar

to the coaxial cable. A typical construction of a shielded guitar cable is depicted

in Figure 5.2. This model is adapted from the datasheets provided by the instru-

ment cable manufacturer DiMarzio [62].

1.

2.3.4.5.

S

S

1 = center conductor             

2 = inner insulation               

3 = carbon conductive shield

4 = braided copper shield

5 = outer insulation          

S = solder                         

Figure 5.2: Construction of a high class shielded guitar cable

It depends largely on the manufacturer how thoroughly the cables are docu-

mented. Quite often no data is given about the electrical characteristics of the

cables, although in the case of shielded cables, it is possible to manufacture the

cables according to certain specifications that determine the essential charac-

teristics. For high quality cables there is usually information available on the

resistance and the capacitance of the cable. This information is enough for de-
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termining the characteristic impedance since the theoretical impedance can be

deduced from the capacitance value with the help of equation (5.18).

At least one patent application [63] has been submitted for a shielded instrument

cable, where the construction of the cable has been described in great detail and

the effects of each layer in the cable are discussed thoroughly. The patent appli-

cation document also lists measured capacitances and other electrical character-

istics of several commercially available guitar cables.

The most crucial electrical property in a guitar cable seems to be the capacitance

of the cable because it modifies the resonance frequency of the pickup. To analyt-

ically determine the characteristic impedance of a coaxial cable, the expression

for either the capacitance or the inductance needs to be determined. The capac-

itance and the inductance of a coaxial cable can be calculated directly from the

dimensions of the cross-sectional layout of the cable. The main parameters to

specify the essential dimensions of the cable are shown in Figure 5.3.

a

b

R

~E

Figure 5.3: A cross-sectional view of a basic coaxial cable

The derivation of the capacitance equation starts from the divergence theorem

of Gauss. An application of this theorem states that
∫

S

~D • d~S =

∫

V

∇ • ~DdV,

saying that the flux of the electric displacement vector ~D through a surface equals

the divergence of ~D within volume V . The divergence is related to free charge

density ρf via the relation

∇ • ~D = ρf ,
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so that ∫

S

~D • d~S =

∫

V

ρf dV, (5.19)

where the volume integral now equals the total (net) free charge enclosed within

surface S. If there is no net charge inside the volume V , as is the case for an

electrically neutral piece of matter, the result of the volume integral equals zero.

The volume integral of net free charge is also zero when evaluated within a

conductor under the influence of an external electric field. The idea would now

be to examine the charges related to the inner conductor of the coaxial cable

with a radius a.

The total electric field inside a volume V enclosed by some arbitrary boundaries

is defined not only by the volume charge density ρ, since the surface charge

density σ is also contributing to the total charge. The volume charge density ρ

refers to the charges inside a volume and the surface charges are contributions

from induced charges on the surface boundary, which cannot be taken as a part

of the volume V . Therefore, the total charge is the sum
∫

V

ρf dV +

∫

S

σf dS,

so that equation (5.19) becomes
∫

S

~D • d~S =

∫

V

ρf dV +

∫

S

σf dS.

When the coaxial cable is used to carry signals, an external voltage is applied

between the terminals of the cable. The applied voltage induces surface charges

to the surface of the inner conductor (with radius a), while the electric field ~E

inside the inner conductor is zero. From this it follows that the total free volume

charge ρf inside the conductor is zero, and the only contribution to the net charge

comes from the surface charge density, i.e.
∫

S

~D • d~S =

∫

S

σf dS. (5.20)

The cross-sectional geometry of a general coaxial type cable is a cylinder with

some arbitrary constant radius, noted as R in this context. This geometrical

shape has a parametric representation

~r(R, θ, z) = R cos θ î+R sin θ ĵ + z k̂, (5.21)

so that the volume element from the Jacobian matrix yields

dV =







cos θ dR sin θ dR 0

−R sin θ dθ R cos θ dθ 0

0 0 dz






= RdRdθ dz. (5.22)
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The surface element vector for a cylinder with a constant radius R is

d~S =







î ĵ k̂

−R sin θ dθ R cos θ dθ 0

0 0 dz






= R cos θ dθ dz î+R sin θ dθ dz ĵ, (5.23)

with a direction to the radial component of the cylinder and normal to the sur-

face. The magnitude of this surface element is

|d~S| =
√

d~S • d~S = Rdθ dz. (5.24)

The electric displacement vector ~D is also normal to the surface, so that for a

unity length (z ǫ [0, 1]) piece of cable

∫

S

~D • d~S =

∫

S

DdS =

1∫

0

2π∫

0

DRdθ dz,

and since ~D depends only on R, the integral evaluates to

DR

1∫

0

2π∫

0

dθ dz = D2πR. (5.25)

Referring again to the dimensions given in Figure 5.3, the surface charge density

is located at a distance of a constant radius a from the centre of the cable and

the charge is assumed to be evenly distributed over the whole area. With these

definitions applied to a unity length (z ǫ [0, 1]) piece of cable, the integral on the

right side of equation (5.20) yields an expression for the total charge

Q = σfa

1∫

0

2π∫

0

dθ dz = σf2πa, (5.26)

so that from equation (5.20) the electric displacement vector

D(R) =
aσf

R
⇒ E(R) =

aσf

ǫǫ0R
.

To calculate the capacitance of the coaxial cable directly from the definition of

the capacitance C = Q/V , the potential difference between the two conductors

in the cable needs to be evaluated. This can be calculated as

V = φ(a)− φ(b) = −
a∫

b

~E • d~l = −
a∫

b

aσf

ǫǫ0R
dR =

aσf

ǫǫ0
ln

(
b

a

)

, (5.27)

since the electric field vector ~E is pointing towards the same direction as dl,

which is equal to dR by equation (5.21).
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Using equations (5.26) and (5.27), the capacitance per unit length of a coaxial

cable

C =
Q

V
=

σf2πa

aσf

ǫǫ0
ln

(
b

a

) = ǫǫ0
2π

ln

(
b

a

) . (5.28)

Although the units do not indicate the length dimension, the result can be taken

to be per unit length because of the unity integration made in equation (5.26). A

better way to approach this would have been to leave the integration undone at

that phase. A shortcut via equation (5.18) gives the inductance per unit length of

the coaxial cable

L = µµ0

ln

(
b

a

)

2π
.

When the capacitance, inductance and resistance are known, one can apply equa-

tion (5.9) to calculate the characteristic impedance of the cable. [64, pp. 74–75

& 331–332]

The equation (5.28) for coaxial cable capacitance holds exactly only for a cable

where the centre conductor is built from one solid wire and the outer shield is a

uniform piece of metal foil or equivalent. To get more flexibility to the instrument

cables, the centre conductor is often made of several wires wound together. The

effective radius a is defined in this situation via approximate multipliers as

a = 2.84r (n = 7) ; a = 3.99r (n = 12)

a = 4.90r (n = 19) ; a = 6.86r (n = 37),

where r is the geometrical radius of a single centre conductor wire and n is

the number of individual wires wound together. Similaly there are approximate

multipliers for the outer conductor if the conductor is not a uniform piece of

metal. In guitar cables the outer shield is often braided or served to further

increase the flexibility of the cable. In these special cases the effective radius b

becomes

b = b+ 1.5r (braided) ; b = b+ 0.8r (served),

where r is the geometrical radius of a conductor wire that the shield is wound

from. [63]

Additionally the patent application [63] strives to minimise the capacitance per

unit length for the benefit of increasing the bandwidth. All of the proposed

methods relate to altering some variable in equation (5.28), but every aspect

modified in that equation has its advantages and disadvantages. A reduction
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of the dielectric constant leads to more expensive materials and manufacturing

processes. An increase of the effective radius of the outer shield also adds more

material costs and can only be done within certain limits due to the available

connector sizes. A reduction of the effective radius of the centre conductor leads

to more breakable cables. The resulting cable measures as a compromise of all

details mentioned above.

To enhance the durability of the cable, the patent application [63] defines a

measure of braid angle, which is composed of several variables related to the

composition of the braided shield. By changing some parameters in the shield

construction, it is possible to enhance the overall strength and stiffness of the

cable. Breakability is indeed a big problem in guitar cables and the enhanced

braid shielding is one way to improve the durability of the cable.

5.2.2 A parallel wire cable

Parallel wire cables are used for transmitting signals for relatively short lengths.

The wires are often twisted around each other to minimise external electric and

magnetic fields around them. Figure 5.4 shows a basic junction of a parallel wire

cable and the 6.3 mm guitar plug revealing the inner construction of the cable.

If the parallel wire transmission lines are being used as instrument cables, they

1.3.

2.4.

5.

S

S

1 = ground conductor         

2 = signal conductor           

3 = insulation                      

4 = insulation                   

5 = outer insulation          

S = solder                         

Figure 5.4: Construction of a parallel wire guitar cord

are not considered as high quality as the coaxial type transmission lines. This is

because the coaxial construction offers better shielding from external disturbance

signals and has more clearly defined electrical characteristics.

If the characteristic impedance of the parallel wire cable is calculated, firstly one

needs to determine the expression for either the capacitance or the inductance

of the geometrical construction. To calculate the capacitance per unit length of

a parallel wire cable, a special method of ’image charges’ is used. This method

works only if the equipotential lines of the linearised charges have an identical

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



282 GUITAR CABLES

shape with the conductor. This requirement is fulfilled nicely for the cylindrical

shaped conductors of a parallel wire cable.

Figure 5.5 depicts the geometrical variables needed to derive a mathematical

model for the cable. The starting point for the analysis is to reduce the sur-

P

r
r1

r2

d

p

A B C D

−λ +λ
θ

a

Figure 5.5: Geometry of a parallel wire transmission line

face charges on the conductor to line charges −λ and +λ inside the conductor.

These line charges are shown as points B and C in Figure 5.5. The fictitious line

charge is called the ’image’ of the real surface charge of the conductor. Gauss’s

divergence theorem in this context is
∫

S

~D • d~S =

∮

λ dl.

where the left side evaluates to D2πR as in equation (5.25). The right side is the

total charge per unit length, which is now calculated from a constant line charge

density

Q = λ

1∫

0

dz = λ.

From here it is evident that

D(R) =
λ

2πR
and E(R) =

λ

2πǫǫ0R
, (5.29)

and the potential φ is related to the electric field ~E by

~E = −∇φ, (5.30)
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so that integration of the left side of equation (5.29) gives
∫

E(R) dR =

∫

−∇φ(R) dR = −φ(R).

The integration on the right side of equation (5.29) yields
∫

λ

2πǫǫ0R
dR =

λ

2πǫǫ0
ln(R) + ln(C),

where ln(C) is the constant of integration. Hence, the potential

φ(R) = − λ

2πǫǫ0
ln(R) + ln(C) =

λ

2πǫǫ0
ln

(
C

R

)

. (5.31)

In this expression C > a, where a is the radius of the conductor.

The line charges create a potential to point P in Figure 5.5, which according to

equation (5.31) is

φP =
λ

2πǫǫ0
ln

(
1

r1

)

− λ

2πǫǫ0
ln

(
1

r2

)

=
λ

4πǫǫ0
ln

(
r22
r21

)

.

With the help of the law of cosines, from triangle BDP

r22 = (d+ p)2 + r2 + 2(d+ p) cos θ = 2(d+ p)(d+ r cos θ) + r2 + p2 − d2.

In the above expression for the law of cosines, the even function properties of

cos(π−θ) = − cos θ are used to simplify the expression. Similarly, for the triangle

CDP

r21 = (d− p)2 + r2 + 2(d− p) cos θ = 2(d− p)(d+ r cos θ) + r2 + p2 − d2.

The expressions for r21 and r22 can be substituted into the potential equation:

φP =
λ

4πǫǫ0
ln

(
2(d+ p)(d+ r cos θ) + r2 + p2 − d2

2(d− p)(d+ r cos θ) + r2 + p2 − d2

)

.

When the location of the image charges are chosen so that p2 = (d2− a2) and the

potential of point P is evaluated at r = a,

φP (a) =
λ

4πǫǫ0
ln

(
d+ p

d− p

)

,

and the potential difference between the two conductors is

V = φP+(a)− φP−(a) =
λ

4πǫǫ0
ln

(
d+ p

d− p

)

− −λ

4πǫǫ0
ln

(
d+ p

d− p

)

=
λ

2πǫǫ0
ln

(
d+ p

d− p

)

.
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From here the capacitance can be calculated using the basic relation

C =
Q

V
=

2πǫǫ0

ln

(
d+ p

d− p

) =
2πǫǫ0

ln

[
(d+ p)(d+ p)

(d− p)(d+ p)

] =
2πǫǫ0

ln

[
(d+ p)2

d2 − p2

] .

Using the earlier definition of p2 = (d2 − a2), the expression for the capacitance

per unit length becomes

C =
πǫǫ0

ln

[
d+

√
d2 − a2

a

] =
πǫǫ0

ln

(

d

a
+

√

d2

a2
− 1

) .

When the capacitance per unit length is known, one can use equation (5.18) to

calculate the inductance per unit length and equation (5.9) to finally find out

the characteristic impedance of a cable with a parallel wire construction. These

formulae will only give rough estimates about the electrical properties of the

cable since the parallel wires are often twisted around each other. The analytical

expressions will be more accurate in the case of the coaxial cable, where the

structure of the cable is more rigid and controllable.

Usually the characteristics of more difficult cable geometries are determined by

measurements. The measurements are based on the theoretical fact that

Z0 =
√

(Zopen)(Zshort),

which means that the characteristic impedance of the cable can be obtained by

determining the input impedance of the cable when it is connected to a voltage

source with the other end open (Zopen) and in short circuit (Zshort). Unfortunately

this measurement is not easily accomplished by basic equipment, so the details

for this procedure are not covered in this context.

5.3 Impedance matching

The obvious practical application for cables is to use them to carry signals from

one device to another. Every electrical device has its own input impedance to

which the cable is connected to. This input impedance is seen as a load from the

viewpoint of the output terminals of the other device and the cable.

The combination of the characteristic impedance Z0 of the cable and the loading

impedance ZL generated by input impedance of some device affect the propaga-

tion of the signal in the cable. General theory states that the signal travelling in
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the cable is completely transmitted to the device only when Z0 = ZL. If Z0 has

a different value from ZL, part of the signal is reflected back from the junction

between the cable and the input terminals of the device.

The depiction of the junction of the cable and the load impedance is given in

Figure 5.6, where the common agreement seems to be that the junction is located

at x = 0 and the beginning of the cable is at x = −l. The waves are generated

and delivered from the beginning of the cable to the load, where they are either

completely absorbed by the load impedance or partially reflected back towards

the negative x-coordinate direction.

ZL

−l 0
xZin

Z0

Figure 5.6: Junction of cable impedance Z0 with load ZL

The mathematical analysis of the situation is identical to the vibrating string

versus the end support problem discussed in section 2.2.4. Consider a cable

which has a characteristic impedance Z0 and is terminated with a device input

impedance ZL = Z0. A typical wave travelling in the positive x-direction in this

cable has a mathematical representation for the voltage

V = V0e
j(ωt−kx),

and for the current

I =
V0

Z0

ej(ωt−kx).

NOTE! Here is a distinct difference to the waves in the vibrating string, namely

regarding the use of j instead of i as the imaginary symbol and the use of the

positive time dependent exponential function ejωt instead of the negative e−iωt.

According to Morse [24, p. 12], this is only a matter of sign convention, but when

one of these conventions is chosen, then it should be used all the way through.

Here it is better to adopt the use of ejωt, because otherwise the following re-

sults will differ somewhat from the results obtained in the standard literature for

electric engineering. For example, if the convention of the negative exponential
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e−iωt was adapted in this context, the impedance of resistance and inductance

connected in series would be R− iωL instead of the common R + jωL.

When solving the partial differential equation (5.5) for the general transmission

line, the solution was calculated using the Laplace transform. Equation (5.5) is

anyhow separable into a product of time t and location x. Therefore, equation

(5.7) can be connected to time by writing

V (x, t) =
[
A+e

−γx + A−e
γx
]
ejωt, (5.32)

where A+ is a complex-valued amplitude of a wave propagating to the positive

direction on the x-axis, and A− is the amplitude of the wave travelling in the

negative direction. The propagation constant γ =
√

(R′ + sL′)(G′ + sC ′). Notice

also the effect of the convention to use the positive exponential for the time

dependence, since now the signs in the exponents of the two wave components

do not match the direction of propagation.

Just like in the case of the unideal string supports, unevenly matched impedances

in cable junctions cause reflection of the propagating signal. In the vicinity of the

junction of the cable and the device input terminals, the voltage waveform can

be modelled as

V (x, t) = Ae(jωt−γx) +KAe(jωt+γx),

where A is the complex-valued amplitude of the wave and K is a voltage reflec-

tion coefficient that determines the amplitude of the reflected wave as a fraction

of the original amplitude A. The reflection equation for the current is

I(x, t) =
1

Z0

[
Ae(jωt−γx) −KAe(jωt+γx)

]
.

The minus sign appears, because the direction of the reflecting current is opposite

to the current of the transmitted signal.

At the boundary x = 0, where the cable connects with the load impedance, the

expression for the voltage is

V (0, t) = Aejωt (1 +K) , (5.33)

and the current

I(0, t) =
A

Z0

ejωt (1−K) . (5.34)

The boundary condition at the junction of the cable and the load impedance

requires that V = IZL. Hence,

V (0, t)

I(0, t)
= Z0

1 +K

1−K
= ZL,
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and from here one can solve the expression for the reflection coefficient as

K =
ZL − Z0

ZL + Z0

. (5.35)

The impedances ZL and Z0 are of course complex numbers and carry the infor-

mation about the magnitude and phase.

When the reflected wave sums up with the transmitted wave, it generates a

standing wave formation. For transmission lines, there exists a definition called

voltage standing wave ratio,

VSWR =
1 +K

1−K
.

This quantity expresses the amplitude ratio of the maximum and minimum am-

plitudes of the standing wave in a transmission line. Figure 5.7 depicts the stand-

ing wave and the locations of maximum and minimum amplitude.

2A(1 + |K|)2A(1− |K|)

Figure 5.7: Standing waves in a transmission line

The input impedance of a load terminated transmission line can be determined

using equations (5.33) and (5.34), but evaluated at x = −l, which is the location

of the input accroding to Figure 5.6. Therefore,

V (−l, t) = Aejωt
[
eγl +Ke−γl

]
, (5.36)

and the current

I(−l, t) =
A

Z0

ejωt
[
eγl −Ke−γl

]
. (5.37)

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



288 GUITAR CABLES

From here the input impedance is calculated as

Zin =
V (−l, t)

I(−l, t)
= Z0

eγl +Ke−γl

eγl −Ke−γl
,

and a substitution of K from equation (5.35) gives

Zin = Z0
ZL cosh(γl) + Z0 sinh(γl)

Z0 cosh(γl) + ZL sinh(γl)
,

where the equivalence formulae

ex − e−x = 2 sinh x and ex + e−x = 2 cosh x

are used to transform the exponential functions into hyperbolic functions of sinh

and cosh. The input impedance in the case of a lossless transmission line is

Zin = Z0
ZL cos(βl) + jZ0 sin(βl)

Z0 cos(βl) + jZL sin(βl)
,

where β =
2π

λ
and refers to the phase constant from the expression of the prop-

agation constant γ.

As a special case of the derived transmission line impedances, the so-called

quarter-wave transmission line has properties, which are used extensively in ra-

dio frequency applications. The name ’quarter-wave’ refers to the length of the

line in terms of the wavelength λ of the signal travelling along the transmission

line. A short-circuited transmission line with a length close to
λ

4
is seen as

an inductor when l <
λ

4
and

2λ

4
< l <

3λ

4

and as a

a capacitor when
λ

4
< l <

2λ

4
and

3λ

4
< l <

4λ

4
.

At the limit, where l =
nλ

4
, the transmission line is a series LC resonator circuit.

Similarly an open-circuited transmission line with a length
λ

4
is seen as

a capacitor when l <
λ

4
and

2λ

4
< l <

3λ

4

and as

an inductor when
λ

4
< l <

2λ

4
and

3λ

4
< l <

4λ

4
.

At the limit, where l =
nλ

4
, the transmission line is a parallel LC resonator

circuit. This behaviour partially explains why short wires in electric circuits are

sensitive to picking up radio frequency noise. [61, pp. 32 – 37]
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5.4 A cable as part of a guitar tone control circuit

So far the signal from a vibrating string has been transformed to an electrical

signal in the pickup and filtered through the tone control circuit. To continue

building the model for the electrical characteristics of the electric guitar, a cable

is connected to the guitar’s output jack, which is soldered to the volume control

potentiometer of the guitar. This construction is modelled with the equivalent

circuit in Figure 5.8, which is directly drawn in the suitable format for nodal

analysis. The characteristics of the cable are modelled with resistance RC , capac-

RP

1

VP

RP

LP

2

CP

RT

CT

RV 1
3

RV 2

RC
4

LC
5 (Vout)

CC

Figure 5.8: A circuit model of a cable connected to the guitar

itance CC and inductance LC . The volume control potentiometer RV is modelled

as two regular resistors and the components with the subscript T refer to the

tone control section. The guitar pickup equivalent circuit is connected before the

tone controls. The complete cable-loaded guitar output section shown in Figure

5.8 can be modelled by the matrix equation




















Y11 −Y12 0 0 0

−Y21 Y22 −Y23 0 0

0 −Y32 Y33 −Y34 0

0 0 −Y43 Y44 −Y45

0 0 0 −Y54 Y55




















×




















V1

V2

V3

V4

V5




















=




















VP

RP

0

0

0

0




















.

All the nonzero elements in the admittance matrix are indicated by the ad-

mittance symbol Y with subscripts referring to the element in the matrix as

Yrow,column. The actual matrix elements derived from the equivalent circuit are
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given in listing (5.38).

Y11 =
1

RP

+
1

sLP

Y12 = Y21 =
1

sLP

Y22 =
1

sLP

+ sCP +
sCT

1 + sCTRT

+
1

RV 1

Y23 = Y32 =
1

RV 1

Y33 =
1

RV 1

+
1

RV 2

+
1

RC

Y34 = Y43 =
1

RC

Y44 =
1

RC

+
1

sLC

Y45 = Y54 =
1

sLC

Y55 =
1

sLC

+ sCC

(5.38)

Typical resistance and capacitance values for shielded guitar cables can be found

from manufacturers’ datasheets, sales brochures [62] and sometimes even from

patent applications [63]. According to Lemme [46], the total capacitances of

typical guitar cables vary between 300 pF − 1000 pF, and according to Anderton

[42, p. 79], the springy coil type cables usually have the largest capacitance

value per unit length. The values for cable resistance RC and inductance LC

taken to the calculations are

RC = 0.02
Ω

m
and LC = 0.2× 10−6 H

m
.

The cable is taken to be 5 meters long and the total capacitance CC of the cable is

varied from 100 pF to 900 pF to see the effect on the overall frequency response

with the pickup and the tone control circuit included.

The simulation results with these values are presented in Figure 5.9. The compo-

nent values have been kept identical compared to the response curves calculated

from the output of the tone circuit in section 4.1. According to the results, the

cable has a quite significant contribution to the overall frequency response in the

higher frequency range. As the capacitance increases, the cut-off frequency of the

filter assembly regarding the high frequencies moves towards lower frequencies

and at the same time attenuates the resonance peak of the pickup.

The impedance curves in section 4.1 were presented to underline the effect of

the volume and tone control potentiometers on the total impedance seen from

the output jack of the guitar. The same impedance curves can be reproduced

to indicate the effect of the cable connected at the end of the tone and volume

control sections. From Figure 5.8, the impedance seen at the end of the cable is
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Figure 5.9: Frequency response at cable output

calculated as

ZPTV C =
(ZPTV +RC + sLC)

1

sCC

ZPTV +RC + sLC +
1

sCC

, (5.39)

where ZPTV is the total impedance of the tone and volume control circuit includ-

ing the pickup. The formula to evaluate ZPTV was given in equation (4.1). Based

on equation (5.39), the total impedance with the cable included reveals that the

capacitance of the cable lowers the resonance frequency compared to the circuit

without the cable.

Figure 5.10 depicts the impedance curves when the resistance of the volume con-

trol potentiometer RV is changed. The total capacitance CC of the cable was fixed

to 500 pF and all the other values remained unchanged so that direct compari-

son to Figure 4.5 is possible. The original impedance curve of the unconnected

pickup is drawn as a reference to indicate the shift in the resonance frequency.

Similarly, Figure 5.11 is directly comparable with Figure 4.4, which shows the

effect of changing the resistance of the tone control potentiometer RT . The only

difference seems to be the change in the resonance frequency due to the small

capacitance of the cable. The value of the cable capacitance CC was fixed to

500 pF as in the case of the volume control impedance calculations shown above.
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Figure 5.10: Impedance seen at the cable output when controlling the volume
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Figure 5.11: Impedance seen at the cable output when controlling the tone
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Chapter

6

Effect devices

As noted in the previous chapters, the strings of the electric guitar act almost as

a constant source of tone. In practise this means that variations in the physical

properties of the strings do not noticeably alter the spectrum of sound, although

the human ear might be sensitive enough to differentiate the sound of certain

types of strings. Using electricity to transfer the sound of guitar strings to an

amplifier gives a million possibilities to alter and modify the sound before it

reaches the loudspeaker. For that purpose, effect pedals, a.k.a. stompboxes,

were invented. Soon after their invention, these pedals became wet dreams of

all guitar players alike.

All physical measures and quantities involved in signal processing theory can be

used as a basis for guitar effects. This scientific point of view has been chosen

to categorise effects into subcategories of amplitude A, frequency f , phase φ and

time t. All of these quantities can be used as parameters in a single function,

A sin (2πft+ φ) .

This chapter presents only the most simplest effect circuits from each category.

The chosen effect circuits are analysed from a scientific point of view as much as

possible. It just happens that these circuits easily get too complex to handle them

in manual calculations, and therefore the decision to analyse only the simple

circuits is justified. Many of the following circuits have features that cover the

field of basic electronics quite effectively. To also present the related theoretical

background, subsections of ’side effects’ have been included within some sections

to explain a certain part of the circuit in more detail.

The treatment does not include digital nor software based effects. This is because

the book is about science, not fiction ... The most interesting part in analogue
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guitar effect devices is the way how properties of basic materials of nature af-

fect and modify electric signals to produce elegant sounds. This is true science

in direct connection with the laws of nature. Surely modern theories of signal

processing allow to implement much more complex effects only by means of

programming, but those things should be treated in other books.

6.1 Amplitude effects

The most common effect type related directly to electric guitars is the so-called

distortion effect. In this effect type the sound coming from the guitar is modified

so that the amplitude waveform of the signal changes from its original shape.

The most common reshaping method is to cut off the rounded corners of the

waveform so that the signal starts to resemble a square wave. The square wave

is considerably rich in harmonics compared to a sinusoidal signal, thereby giving

more possibilities to control the sound by different playing techniques. Sine-to-

square conversion can be considered a special case of harmonic distortion, since

for periodic signals the period stays the same and only the upper partial texture of

the signal is changed. Common methods to create squared amplitude distortion

effects include:

• using comparators or Schmitt triggers to shoot the signal to maximum am-

plitude until a reference voltage is crossed by the input voltage

• using gain stages with overly large amplification so that the signal is clipped

either symmetrically or asymmetrically

• using diodes to clip the amplitude peaks of the waveform (logarithmic am-

plification)

Distortion effects based on these waveform squaring techniques typically cause a

rough sound that is widely used in all areas of music. [65] [66]

In the stompbox world, distortions come in two flavours: basic distortion and

overdrive. The difference between these two is subtle but still noticeable. Over-

drive effects are amplitude dependent so that a low-amplitude input signal gets

distorted less than high-amplitude input. This allows the guitarist to control the

effect with the style of playing. Basic distortion devices do not have this sensitiv-

ity control, as they just distort everything in an equal manner. As an example of

amplitude distortion devices, the classic fuzz effect is analysed in section 6.2.
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A tremolo effect can also be categorised as an amplitude effect. The underlying

mechanism to produce typical tremolo tones is to apply amplitude modulation

techniques to the signal obtained from the guitar. The amplitude modulation on a

circuit level is implemented using a voltage-controlled amplifier block. The gain

of the amplifier is modulated by a voltage signal from a low-frequency oscillator.

The modulating waveforms can include sine, triangle, ramp, square or any other

periodic signals that can be generated by a self-oscillating circuit section. The

voltage-gain coupling is typically implemented using opto-isolators or field-effect

transistors as voltage-controlled resistors. A basic analogue tremolo circuit which

makes use of the resistive properties of field-effect transistors is taken under more

detailed analysis in section 6.3.

The third major effect type under the amplitude category consists of devices

that produce compression, expansion and noise gating. These effect types are

most often used in a recording studio to even out the signal level within the

dynamic range of the recording devices. All of these dynamic effects are based

on voltage-controlled amplification combined with constant probing of the input

signal voltage level. The voltage-gain coupling can be implemented using opto-

isolators or field-effect transistors as voltage-controlled resistors, just like in the

case of the tremolo effect. A more detailed analysis on an old compressor effect

pedal, the ’Orange Squeezer’, is presented in section 6.4.

6.2 Fuzz box voodoo

One of the first commercial distortion pedals was the ’Fuzz-Tone’ pedal, which

was manufactured under the brand name ’Maestro’ in the early years of 1960’s.

The bipolar junction transistor was invented in 1947, so it did not take long

for it to find its way into a variety of entertainment devices - including guitar

effect pedals. The first textbooks of semiconductor engineering were written

based on the properties of germanium transistors, which were still more popular

than silicon transistors at that time. Due to this, the first distortion pedals were

designed to use germanium transistors.

Surely the fuzz effect is the most popular do-it-yourself (DIY) project for gui-

tarists with interests towards electronics. The ’original’ fuzz effect schematic is

shown in Figure 6.1. As a first guess, the circuit diagram of the fuzz effect looks

like a standard preamplifier section, which could be used in several different

electronics projects. Actually, almost exactly the same circuit is given as a text-
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book example by Cowles [67, p. 101] to demonstrate a basic ’direct-coupled pair’

transistor amplifier with DC feedback. The same circuit implemented using AC

feedback is also discussed in the same context.

C1

2.2uF

Vin
Q1

R1 33 kΩ

Q2

R2 8.2 kΩ

R3

470Ω

9 V C2

0.01uF

R4 500 kΩ

R5

100 kΩ

R6 1 kΩ

Vout

C3 20uF

Figure 6.1: The fuzz effect circuit schematic

The thing that makes this circuit differ from a regular preamplifier or a standard

textbook example is that the design has been deliberately made erroneously, in-

cluding the most obvious failure in biasing the two transistors to a balanced

operating point. This undergraduate student kind of biasing is analysed in detail

in section 6.2.1.

From a user perspective, the device is as simple as it can get, but this also means

that the variational properties of this device are only restricted to the distor-

tion effect. The basic user of this effect device can adjust the level of distortion

(over-amplification or clipping) with potentiometer R6 and the output level of

the signal with potentiometer R4. The DC feedback loop in the circuit is cre-

ated with resistor R5, which connects the emitter of transistor Q2 to the base

of transistor Q1. The feedback loop is there to stabilise the gain properties of

the circuit. Other resistors are included to complete the transistor biasing, and

capacitors C1 and C2 are isolating the possible DC voltages from preceding and

following circuits.

Basically there are so many variations of this classic circuit that it is impossible to
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say which is the original version. This design is adapted directly from the website

[68] maintained by the authoritative guitar effect specialist R.G. Keen. A similar

schematic has also been published in the literature by Hunter [69, p. 29]. The

first fuzz circuits used ancient germanium pnp transistors, which bring a fresh

breeze from the first decades of electronics. There are also other versions of the

fuzz effect that use npn transistors and some have even used silicon transistors.

The genuine fuzz that Jimi Hendrix used was built with germanium transistors,

so that is the way to go in this case.

6.2.1 The DC bias analysis of the fuzz effect

This section presents two slightly different approaches to analyse the biasing con-

figuration of the fuzz effect. When using the first method, one has freedom to

invent the equations directly by examining the different branches of the circuit.

The second method relies on the nodes of the circuit to construct the biasing

equations. The second method is more systematic and often the preferred ap-

proach to solve similar problems.

To make the DC analysis easier, it is a good habit to draw the DC part of the circuit

separately. At first look at Figure 6.2, it does not seem to be easy to calculate

the quiescent values for this circuit because of the feedback loop between the

transistors Q1 and Q2.

Q1

IC1

IE1

IB1

I ′C1

R1 33 kΩ

VC1

IC2

IE2

IB2

I ′E2

Q2

R2 8.2 kΩ

R3

470Ω

VE2
R5

100 kΩ

R6 1 kΩ

VCC

VEE

VEE

+

−
VBE1

+

−
VBE2

Figure 6.2: The fuzz circuit redrawn for DC bias analysis
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Because pnp transistors are used, VEE in Figure 6.2 is connected to +9 V and

VCC is serving as the ground potential. The current directions have been chosen

to flow from higher potential towards lower potential, according to the common

universal agreement of current flow.

To demonstrate the first analysis method, one needs to invent feasible current

and voltage equations from the circuit. From Figure 6.2 it is possible to write at

least the following transistor circuit current equations:

IC1 = βF1IB1 (6.1)

IE1 = (βF1 + 1)IB1 (6.2)

IC2 = βF2IB2 (6.3)

IE2 = (βF2 + 1)IB2 (6.4)

I ′E2 = IE2 − IB1 (6.5)

I ′C1 = IC1 + IB2. (6.6)

Voltage equations are obtained by summing all voltage drops occurring in a cer-

tain loop. The loops can be taken from VEE to ground, or back to VEE, as long

as all the branches have been included in the set of voltage equations. The equa-

tions are not unique by any means, and the following are only one set of possible

equations:

VEE = VEE − VBE1 − IB1R5 + I ′E2R6 (6.7)

0 = VEE − VBE1 − IB1R5 − VBE2 − I ′C1R1 (6.8)

VC2 = IC2 (R2 +R3) . (6.9)

A good starting approach is to solve first the base current of transistor Q1. A

substitution of equation (6.5) into (6.7) leads to

IB1 =
IE2R6 − VBE1

R5 +R6

. (6.10)

This is a relatively simple expression for IB1 and it can be substituted further into

equation (6.8). Including also (6.6) in (6.8) gives

0 = VEE − VBE1 − IE2
R5R6

R5 +R6

− VBE1
R5

R5 +R6

− VBE2 − IC1R1 − IB2R1.

The next step is to find an expression that has only the current variable IB2 in it.

Thus, one needs to use equations (6.1) and (6.4) and once more substitute (6.10)
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into the remaining reference to IB1. Now the equation solved for IB2 reads

IB2 =

VEE + VBE1

(
R5 + βF1R1

R5 +R6

− 1

)

− VBE2

R1 + (βF2 + 1)

(
R5R6 + βF1R1R6

R5 +R6

) . (6.11)

The expressions for these two currents IB1 and IB2 can be used to solve all other

unknown currents and voltages.

For example, by substituting the result of (6.11) into equation (6.3), the value

for the quiescent collector current ICQ2 is found. This value is needed in the AC

analysis phase to determine the value for the transistor’s internal resistance rπ by

using equations

gm =
|ICQ|
VT

and rπ =
βF

gm
, (6.12)

where the thermal coefficient VT ≈ 25 millivolts.

When inserting the actual component values into the derived quiescent equa-

tions, one can have some idea about the features of this circuit. Regardless of the

βF current gain values of the transistors, the first transistor is overbiased close

to VEE and the second stage is underbiased close to the ground level. At normal

amplitudes of the input signal, this uneven biasing causes clipping of the input

signal, which is heard as distortion at the output of the fuzz effect. It is the

peculiar DC biasing of the transistors which creates the fuzzing sound.

The numerical results obtained from the analytical quiescent value calculations

are collected to a common table in section 6.2.5, where those can be easily com-

pared to results from SPICE simulations and prototype measurements.

The second bias analysis method builds up the current and voltage equations in

a slightly different, yet more organised, manner. The direct current model in

Figure 6.2 has two distinct voltage nodes, labelled as VC1 and VE2. The output

node is identified in this case as VC2, but it is not needed in the bias analysis. It

is also beneficial to notice that VE2 = VC1 + VBE2. This reduces the number of

distinct voltage nodes to one.

Based on Kirchhoff’s current law, the sum of currents entering a node equals the

sum of currents leaving a node. Therefore, the current equations for the voltage
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nodes VE2 and VC1 are:

I ′E2 = IE2 − IB1 = (βF2 + 1)IB2 − IB1

I ′C1 = IC1 + IB2 = βF1IB1 + IB2.

These equations can be combined to eliminate the base current IB2 and then the

current equation reads

I ′C1 = βF1IB1 +
I ′E2

βF2 + 1
+

IB1

βF2 + 1
.

These currents can be expressed with the node voltages as:

I ′E2 =
VE2

R6

; I ′C1 =
VC1 − VCC

R1

; IB1 =
VEE − VBE1 − VE2

R5

and after substituting the voltage equations,

VC1 − VCC

R1

= βF1
VEE − VBE1 − VE2

R5

+
VE2

R6(βF2 + 1)
+

VEE − VBE1 − VE2

R5(βF2 + 1)
.

With the fact that VE2 = VC1+VBE2, one has an equation from where the voltage

VC1 can be solved. Based on this analysis, all the other biasing voltages and

currents can also be solved.

6.2.2 The AC analysis of the fuzz effect

The small-signal model for the fuzz effect is drawn by replacing the transistors

by their small-signal equivalents as explained in section 1.3.10. To prepare for

the use of nodal analysis, all external alternating voltage sources are converted

into current sources and all DC voltage sources are considered to be at ground

potential from the viewpoint of alternating signals.

RS

1 2
C1

rπ1

gm1vπ1

3

R1

4
rπ2

R61

R62 C3

5 6

gm2vπ2 R2

R3

7(Vout)

R42

C2 R41

R5

VS

RS

Figure 6.3: A small-signal model of the fuzz effect circuit

Figure 6.3 shows the circuit diagram of the small-signal model. The current

source on the left and its internal resistance RS should represent the electric
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guitar as a signal source. The resistors rπ1 and rπ2 represent the internal input

resistances of transistors Q1 and Q2. Similarly, gm1 and gm2 are the transconduc-

tances of the transistors and the small-signal voltages vπ1 and vπ2 represent the

potential differences acting over the input resistances rπ1 and rπ2. The poten-

tiometers R6 and R4 have been divided into two separate resistors. The voltage

nodes are indexed with numbers from 1 to 7, where the node 7 is the output node

of the circuit. The circuit of Figure 6.3 has a matrix representation,

















Y11 −Y12 0 0 0 0 0

−Y21 Y22 0 −Y24 0 0 0

0 0 Y33 −Y34 0 0 0

0 −Y42 −Y43 Y44 0 0 0

0 0 0 0 Y55 −Y56 0

0 0 0 0 −Y65 Y66 −Y67

0 0 0 0 0 −Y76 Y77

















×

















V1

V2

V3

V4

V5

V6

V7

















=


















VS

RS

0

−gm1V2

gm2 (V3 − V4)

−gm2 (V3 − V4)

0

0


















.

The nonzero elements of the admittance matrix are identified only with their cor-

responding indices because of limited space. The following listing (6.13) contains

the actual terms that should be substituted into the matrix above.

Y11 =
1

RS

+ jωC1 Y12 = Y21 = jωC1

Y22 =
1

rπ1
+

1

R5

+ jωC1 Y24 = Y42 =
1

R5

Y33 =
1

rπ2
+

1

R1

Y34 = Y43 =
1

rπ2

Y44 =
1

rπ2
+

1

R5

+
jωC3 +

1

R62

1 + jωC3R61 +
R61

R62

Y55 =
1

R2

Y56 = Y65 =
1

R2

Y66 =
1

R2

+
1

R3

+
jωC2

1 + jωC2R41

Y67 = Y76 =
jωC2

1 + jωC2R41

Y77 =
jωC2

1 + jωC2R41

+
1

R42

(6.13)

At this phase, the active transconductance parameters gm1 and gm2 have not yet

been included in the admittance matrix, since this form of the equation is just

to show the primary matrix that is directly written down from the small-signal

model. To reach a sufficient form for the admittance matrix to solve the node
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voltages, the transconductances need to be transferred to the admittance matrix.

In the current vector, transconductance gm1 on row 3 is multiplying voltage V2.

Therefore, gm1 is moved to the admittance matrix on row 3 to column 2, which

multiplies the node voltage V2 in the voltage vector. The move of gm1 leads to a

modified admittance matrix element

Y ′
32 = −gm1rπ1

rπ1
.

Doing a similar move to gm2 on rows 4 and 5 of the current vector results in four

elements:

Y ′
43 = −gm2rπ2 + 1

rπ2
Y ′
44 =

gm2rπ2 + 1

rπ2
+

1

R5

+
jωC3 +

1

R62

1 + jωC3R61 +
R61

R62

Y ′
53 =

gm2rπ2
rπ2

Y ′
54 = −gm2rπ2

rπ2
.

In each of the above equations gm1rπ1 = βF1 and gm2rπ2 = βF2, and normally

the βF current gain parameter is used in the calculations. Basically there are

slight differences between the DC current gain βF and the AC current gain hfe

as explained in section 1.3.8, but as a rough estimate the βF is sufficient to be

used in place of hfe. With these additions, the use of Cramer’s rule leads to the

determinant division

V7 = Vout =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y11 −Y12 0 0 0 0
VS

RS

−Y21 Y22 0 −Y24 0 0 0

0 Y ′
32 Y33 −Y34 0 0 0

0 −Y42 Y ′
43 Y ′

44 0 0 0

0 0 Y ′
53 Y ′

54 Y55 −Y56 0

0 0 0 0 −Y65 Y66 0

0 0 0 0 0 −Y76 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y11 −Y12 0 0 0 0 0

−Y21 Y22 0 −Y24 0 0 0

0 Y ′
32 Y33 −Y34 0 0 0

0 −Y42 Y ′
43 Y ′

44 0 0 0

0 0 Y ′
53 Y ′

54 Y55 −Y56 0

0 0 0 0 −Y65 Y66 −Y67

0 0 0 0 0 −Y76 Y77

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Basically it is possible to write open the determinants and obtain the transfer
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function of the fuzz circuit in symbolic form but it takes about two weeks and

many sheets of paper (experience has shown ...). The brute force method is

obviously not suitable in this case. However, the determinant division can be

solved effortlessly using Octave or Matlab, where the determinants can be eval-

uated numerically. The results of the numerical analysis to obtain a theoretical

frequency response of the fuzz circuit are shown in section 6.2.5.

6.2.3 Side effect: feedback in transistor circuits

Since the fuzz effect circuit is a textbook example of a typical feedback ampli-

fier, it is convenient to explore the concept of feedback more thoroughly in this

context. Feedback mainly affects the DC and AC gains and the input and output

impedances of the circuit. If the feedback loop is excluded from the fuzz circuit,

the remaining circuit would be a simple direct-coupled pair shown in Figure 6.4.

Here the circuit has been drawn using npn transistors. In the upcoming analysis

the circuit is treated as a current amplifier by adding a current-shunt feedback

loop and as a voltage amplifier by adding a voltage-series feedback loop.

C1

Q1

RC1

Q2

RC2

VCC

RB1

RE2 CE2

Vout

Vs

Rs

Figure 6.4: A bipolar junction transistor direct-coupled pair amplifier

Feedback is a fundamental concept in all fields of engineering. In electronics

negative feedback is used for stabilising gain, modifying impedance, extending

bandwidth and reducing noise. References to the terms of DC and AC feedback
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imply that the feedback stabilises and enhances either DC or AC behaviour of

the circuit. Typically the feedback is a mixture of AC and DC feedback. The

most important parameters to describe feedback are the return ratio T and the

feedback factor β. The following discussion and analysis aims to explain how

these parameters are evaluated and what do they actually mean in practice.

Before getting down to business, it is worth mentioning a good tool for analysing

feedback in electronics and in general: the signal flow graph. Figure 6.5 intro-

duces the most basic elements used for visualising a complete signal chain as a

flow graph. The key point is to understand how the multipliers Gx between two

X1 X2 X3

G1 G2

X1 X3

G1G2

X1 X2 X3

G1

G2

G3

X1 X3

G1G2

1−G2G3

X1 X2 X3

G1 G2

X1 X3

G1

G2

Figure 6.5: Basic forms of signal flow functions and their ’simplifications’

junctions are related to each other when the flow graph is simplified by reducing

the number of branches. The mathematical ’proof’ of these multiplier combina-

tions is simple; for example the bottom signal flow is evaluated as

X2 = G1X1

X2 = G2X3 → X3 =
G1

G2

X1.

The multiplier is applied to the junction from where the arrow leaves and the

result of this multiplication is the junction where the arrow points to.

A general feedback cycle is easily demonstrated with the signal flow graph of Fig-

ure 6.6. The form of presentation is adapted from the textbook of Millman [15].

The idea is to introduce a new set of ’two-port’ parameters t11, t12, t21, t22, which

act as multipliers between the branches of the feedback circuit. The method of

evaluating the multipliers is to utilise the idea of superposition. When evaluating

each multiplier one by one, some of the junctions (voltage or current sources)

are given a zero value to isolate a specific section of the circuit. The dashed

line between Xi and X̂i should be interpreted as if the connection between these

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



6.2 FUZZ BOX VOODOO 305

Xs

Xi X̂i

Xo

t21

t11

t22

t121
Xs Xo

t11 + t12t21
1− t12t22

Figure 6.6: Signal flow graph to explain feedback

two points had been broken. Since X̂i is just a parameter related to the con-

trolled source, the connection between Xi and X̂i in the small signal model can

be directly considered as ’broken’ and the circuit configuration does not need any

changes for calculations. Detailed examples of this method are to follow later on.

The simplified equation for the feedback signal flow is derived by writing the

equations

Xi = t21Xs + t22Xo (6.14)

X̂i = Xi (6.15)

Xo = t12X̂1 + t11Xs (6.16)

and then simply solving the relation between the input Xs and the output Xo.

When comparing to the "general equation" of feedback,

Xo =
t11 + t12t21
1− t12t22

Xs =
AOL

1 + T
Xs, (6.17)

each of the parameters are given their special meaning. The mathematical defi-

nitions for the parameters are stated as:

t11 =
Xo

Xs

∣
∣
∣
∣
X̂i=0

t12 =
Xo

X̂i

∣
∣
∣
∣
Xs=0

t21 =
Xi

Xs

∣
∣
∣
∣
Xo=0

t22 =
Xi

Xo

∣
∣
∣
∣
Xs=0

.

On the right side of each definition is an indication which source should be set

to zero when evaluating the parameter. The source can be current or voltage

depending on the feedback configuration. Often the trickiest part is to handle

the output source correctly when evaluating t21. It helps to think that when

setting the output source to zero, the output signal should be isolated so that no

signal goes to the feedback loop. When considering parameters t12 and t21, the

feedback part of the circuit is typically seen as a load and therefore is a natural

part of these parameters.
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With respect to these parameters, the return ratio has a relation of

−T =
Xi

X̂i

∣
∣
∣
∣
Xs=0

= t12t22 = t12t21
t22
t21

≈ AOL β.

The last approximation is valid only if the feedforward path is neglected in the

feedback network. The return ratio T is a very useful parameter, which is es-

pecially needed when evaluating the impedance changes due to the feedback

configuration.

Typically circuits with feedback loops are analysed by extracting the amplifier

gain path and the feedback path as separate parameters. By the rules indicated

in figure 6.5, the gain path forward transmission transfer function is

Xo

Xs

= t12t21. (6.18)

If the feedforward path t11 is neglected (as is typically safe to do), then the so

called open loop gain AOL = t12t21. With the same reasoning the feedback path

reverse transmission transfer function is

Xs

Xo

=
t22
t21

= β. (6.19)

So the general idea is to evaluate a transfer function between input and output

to both directions of signal flow and indicate them as AOL and β. The most inter-

esting feedback parameter is the feedback factor β, which describes the reverse

transmission of the feedback network. Quite often approximate feedback anal-

ysis methods give a false meaning to β, as if it would be a factor related to t22

path only. Generally β describes the reverse transfer function where the output

node Xo is taken as the signal source and the source node Xs is treated as the

end point of the feedback signal.

The input and output impedances of a circuit with feedback can be evaluated

using the Blackman’s impedance formula

ZF = ZD
1 + TSC

1 + TOC

, (6.20)

where ZD is the input or output impedance evaluated from a ’dead system’ (gain

is set to zero) and TSC , TOC are the return ratio T evaluated in short-circuited

(SC) and open-circuited (OC) conditions respectively. Typically it is enough to

evaluate T once according to its definition and then in the obtained equation set

values 0 (short) or ∞ (open) to the input and terminating impedances (Rs and

RL). The ’dead system’ is obtained by suppressing the controlled source (X̂i = 0)
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just like it is done when evaluating the t11 feedforward parameter. The ’dead

system’ input and output impedances ZID and ZOD are then evaluated from the

zero-gain system. These impedances are scaled with the return ratio depending

on the feedback configuration used. Concrete examples will follow later on.

The current-shunt feedback is typically applied in current amplifiers, where

the output current is sampled and fed back to the input in a parallel (shunt)

connection. This feedback configuration is also known as the ’shunt-series’ type

because the output current is probed by a series connection (parallel probing

of current is not possible). In the feedback analysis the amplifier element is

modelled as a general ’two-port’ system (see Figure 6.7), from where the series

and shunt connections are easily distinguished.

RsIs rπ gmiπrπ ro RC2||RL

iπ

iout

amplifier circuit

feedback circuit

RE2

RF

CE2

Figure 6.7: A current amplifier with shunt feedback

The feedback network in Figure 6.7 is implemented as a simple passive current

divider, where the output current is divided between resistors RF and RE2. The

capacitor CE2 acts as a short circuit for AC currents so that the feedback loop

in this case is closed for DC current only. The feedback configuration is drawn

specifically this accurately to relate to the circuit under analysis.

An example amplifier structure using the current-shunt configuration is shown in

Figure 6.8. This configuration is chosen because it is used as a basis in the early

’fuzz-face’ guitar effect devices. The feedback loop is implemented by connecting

the emitter of the second amplifier stage to the base of the first amplifier stage

via resistor RF . As already mentioned, the feedback loop is closed only for direct
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C1

Q1

RC1 10 kΩ

VC1 Q2

RC2 5 kΩ

VCC

12 V

VE2
RF

150 kΩ

RE2 2 kΩ 20 µFCE2

VC2 Vout

Vs

Rs

Figure 6.8: A direct-coupled pair amplifier with current-shunt feedback

current. Therefore, the feedback is used here mainly to enhance the biasing

stability of the amplifier.

To see the effects of the feedback loop, the amplifier should be given an in-depth

analysis from the viewpoint of DC and AC operation. The DC model is redrawn

for analysis purposes in Figure 6.9. Clearly the feedback loop is used for giving

the needed base current for transistor Q1.

A reasonably systematic method for the DC bias analysis is to examine the inde-

pendent voltage nodes of the circuit. The direct current model in Figure 6.9 has

two distinct voltage nodes, labelled as VC1 and VE2. It is also beneficial to notice

that VE2 = VC1−VBE2. This reduces the number of distinct voltage nodes to one.

Based on Kirchhoff’s current law, the sum of currents entering a node equals the

sum of currents leaving a node. Therefore, the current equations for the voltage

nodes VE2 and VC1 are:

I ′E2 = IE2 − IB1 = (βF2 + 1)IB2 − IB1

I ′C1 = IC1 + IB2 = βF1IB1 + IB2.

These equations can be combined to eliminate the base current IB2 and then the
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Q1

IC1

IE1

IB1

I ′C1

RC1 10 kΩ

VC1

IC2

IE2

IB2

I ′E2

Q2

RC2 5 kΩ

VCC = 12 V

VE2

RF

150 kΩ

RE2 2 kΩ

−
+

VBE1

−
+

VBE2

Figure 6.9: A DC model of the amplifier with current-shunt feedback

current equation reads

I ′C1 = βF1IB1 +
I ′E2

βF2 + 1
+

IB1

βF2 + 1
.

These currents can be expressed with the node voltages as:

I ′E2 =
VE2

RE2

; I ′C1 =
VCC − VC1

RC1

; IB1 =
VE2 − VBE1

RF

and after substituting the voltage equations,

VCC − VC1

RC1

= βF1
VE2 − VBE1

RF

+
VE2

RE2(βF2 + 1)
+

VE2 − VBE1

RF (βF2 + 1)
.

With the fact that VE2 = VC1−VBE2, one has an equation from where the voltage

VC1 can be solved. Based on this analysis, all the other biasing voltages and

currents can also be solved.

Next the focus moves to the AC feedback analysis, which for the given circuit is

simple: there is no AC feedback because of capacitor CE2. But since it would

be nice to introduce the tools for feedback analysis, let’s remove all the capac-

itors from the circuit and analyse the feedback properties of the circuit at mid-

frequency range.

Considering the frequency response (AC) analysis, it is necessary to redraw the

circuit using the small-signal model of the BJT. A low-frequency BJT model is
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sufficient in this case because the focus is on the audio frequency analysis only.

The small-signal model in Figure 6.10 still has the capacitors drawn in place, but

the following analysis assumes those are removed from the circuit.

Rs

1 2
C1

rπ1

gm1vπ1

3

RC1

4
rπ2

RE2 CE2

5(Vout)
gm2vπ2

RC2

RF

Vs

Rs

+ −vπ2+ vπ1

Figure 6.10: A small-signal model of the direct-coupled pair amplifier with current-

shunt feedback

Let’s apply the general feedback analysis to this circuit and find equations for

t12, t21, t22, T and β. Since the feedback signal is current, it is convenient that the

controlled sources are transformed into ’current mode’ using the expansion

gmvπ = gmrπ
vπ
rπ

= βF iπ. (6.21)

When following this feedback analysis it is necessary that one controlled source

be chosen as an independent source. This independent source is identified later

on by using the notation

βF Îπ. (6.22)

The return ratio T and t12 are obtained from the same circuit model where Xs =

Is is set to zero. To evaluate t21, a circuit with the output source Xo = Io = 0

needs to be drawn. This circuit is shown in Figure 6.11 and simplified further in

Figure 6.12.

The matrix equation describing the circuit in Figure 6.12 is given by equation

(6.23).








1

Rs

+
1

rπ1
+

1

RF +RE2

0

0
1

RC1

+
1

rπ2







×







V1

V2






=







Is

−βF1Îπ1







(6.23)
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Rs

1

rπ1

βF1Îπ1

2

RC1

3
rπ2

RE2

4(Vout)
βF2iπ2

RC2

RF

Is

iπ2 = 0 iπ2 = 0
iπ1 Iout

Figure 6.11: Circuit model for evaluating the t21 feedback parameter

Rs

1

rπ1

RF

RE2

βF1Îπ1

2

RC1

rπ2

Is

iπ1

Figure 6.12: Simplified circuit model for evaluating the t21 feedback parameter

This matrix equation can be written directly by inspecting the circuit model and

using the rules of the nodal analysis. The nodal analysis is used, because the

second controlled current source cannot be transformed as a voltage source due

to a missing parallel resistance. According to the rules of the nodal analysis, the

admittance terms are collected to the main matrix and the current source terms

are placed into the current vector. The voltage nodes in the voltage vector are

the variables to be solved from this equation.

For evaluation purposes it is convenient that all controlled source terms from the

current vector are moved to the admittance matrix. Because the matrix equa-

tion is just a set of linear equations, the controlled source terms are subtracted

or added to both sides of the equation. It is also necessary to identify to which

voltage node variables the controlled source term relates to. Based on this dis-

cussion, the matrix equation (6.24) is readily modified in the desired form.








1

Rs

+
1

rπ1
+

1

RF +RE2

0

βF1

rπ1

1

RC1

+
1

rπ2







×







V1

V2






=







Is

0







(6.24)
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The feedback parameter t21 was defined as the fraction
Xi

Xs

, where the source

terms in this current amplifier case are defined as currents. Therefore, the result-

ing equation for t21 is

t21 =
iπ1
Is

=
V1

rπ1Is
=

Rs(RE2 +RF )

(rπ1 +Rs)(RE2 +RF ) +Rsrπ1
. (6.25)

As a single parameter this does not yet describe much of the circuit properties, it

is just a multiplier between the input source and the input of the amplifier.

The circuit model needs to be redrawn for analysing the return ratio T and the

feedback parameter t12. Figure 6.13 shows the correct model, where the input

source is removed due to the rule Xs = Is = 0. When the value of a current

source is set to 0, it describes on open-circuit condition and the branch containing

the current source is simply removed from the circuit as seen from Figure 6.13.

Rs

1

rπ1

βF1Îπ1

2

RC1

3
rπ2

RE2

4(Vout)
βF2iπ2

RC2

RF

+ −vπ2+
vπ1

Is = 0

iπ1 Iout

iπ2

Figure 6.13: Circuit model for evaluating feedback parameters T and t12

The matrix equation describing the circuit model of Figure 6.13 is written as




















1

Rs

+
1

rπ1
+

1

RF

0 − 1

RF

0

0
1

RC1

+
1

rπ2
− 1

rπ2
0

− 1

RF

− 1

rπ2

1

RF

+
1

RE2

+
1

rπ2
0

0 0 0
1

RC2





















×

















V1

V2

V3

V4

















=

















0

−βF1Îπ1

βF2iπ2

−βF2iπ2

















.

This equation needs to be modified so that it is easy to solve the fractions − iπ1

Îπ1

and
Iout

Îπ1
as required by the definitions of the feedback parameters. Therefore
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the independent controlled source term Îπ1 is left to the current vector, while all

other current source terms are moved to the admittance matrix. The resulting

matrix equation is of the form shown below and the unknown voltages can be

relatively easily solved from this matrix equation using the Cramer’s rule.





















1

Rs

+
1

rπ1
+

1

RF

0 − 1

RF

0

0
1

RC1

+
1

rπ2
− 1

rπ2
0

− 1

RF

−βF2 + 1

rπ2

1

RF

+
1

RE2

+
βF2 + 1

rπ2
0

0
βF2

rπ2
−βF2

rπ2

1

RC2





















×

















V1

V2

V3

V4

















=

















0

−βF1Îπ1

0

0

















.

After solving the fraction − iπ1

Îπ1
one has the equation for the return ratio

T = − iπ1

Îπ1
=

RP

rπ1

βF1RC1(βF2 + 1)RE2

(RE2 +RF +RP )(RC1 + rπ2) + (βF2 + 1)RE2(RF +RP )
,

where a parallel resistance term RP = Rs||rπ1 has been taken into use to simplify

the equations. In a similar fashion the feedback parameter t12 is solved using the

same model, and the result is

t12 =
V4

RC2Îπ1
= − βF1RC1βF2(RE2 +RF +RP )

(RE2 +RF +RP )(RC1 + rπ2) + (βF2 + 1)RE2(RF +RP )
.

If the approximation is made that βF2 + 1 ≈ βF2, then the multiplier t22 will

simplify considerably to the form

t22 = − T

t12
=

RSRE2

(rπ1 +RS)(RF +RE2) +RSrπ1
,

and then the equation for the feedback factor becomes

β =
t22
t21

=
RE2

RE2 +RF

. (6.26)

For evaluating the input impedance one must draw a circuit model for the so

called ’dead-system’. The dead-system impedance was needed for using the

Blackman’s impedance formula (6.20). Figure 6.14 shows the dead-system model

with the independent controlled source suppressed. Figure 6.14 includes also an

ideal test current source IT , which does not have any internal source impedance.

Hence, the input impedance is determined by sourcing current and measuring

the resulting voltage at voltage node V1.
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Rs

1

rπ1

2

RC1

3
rπ2

RE2

4(Vout)
βF2iπ2

RC2

RF

IT

+ −vπ2+
vπ1

iπ1 Iout

iπ2

Figure 6.14: Circuit model for evaluating the dead-system input impedance

The impedance is evaluated by solving V1 from the matrix equation below and

dividing by the test current It.
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− 1

RF
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RF

+
1

RE2
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1
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×

















V1

V2

V3
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=

















It

0

0

0

















.

Then one will get the dead-system input impedance with Rs included. The true

input impedance of the amplifier itself does not contain Rs. The input impedance

without Rs is obtained from the result by making the resistance of Rs infinitely

large (in numerical analysis 100 megohms is enough). For getting a decent ex-

pression for the dead-system input impedance it is not necessary to solve the

matrix equation, because a direct inspection of Figure 6.14 shows the input

impedance to be approximately the parallel connection of the branches rπ1 and

RF +RE2.

The Blackman’s formula requires also the return ratio to be evaluated in short-

circuit and open-circuit conditions. Basically this is simple, since the method-

ology states that Rs and RL are not part of the amplifier feedback cycle when

considering the input and output connections. Therefore, one can get the short-

circuit and open-circuit conditions by inspection from the already evaluated ex-

pression for T . Setting Rs = 0 In the return ratio of the current-shunt feedback

system creates the short-circuit condition. For this condition T (Rs → 0) = 0, so
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the only meaningful value for the return ratio must come from setting Rs = ∞.

Hence,

T (Rs → ∞) =
βF1RC1(βF2 + 1)RE2

(RE2 +RF + rπ1)(RC1 + rπ2) + (βF2 + 1)RE2(RF + rπ1)
,

and the use of the Blackman’s impedance formula for the input impedance with

feedback gives

ZIF =
ZID

1 + T (Rs → ∞)
≈ rπ1||(RF +RE2)

1 + T (Rs → ∞)
.

So the current-shunt feedback reduces the input impedance by the amount de-

termined by the open-circuited return ratio.

As its name suggests, the voltage-series feedback is typically applied in voltage

amplifiers. In this feedback type the output voltage is sampled and fed back to

the input in series with the signal source. This feedback configuration is also

known as the ’shunt-series’ type because the output voltage is probed by a shunt

connection (probing of voltage with a series connection is not possible). In the

feedback analysis the amplifier element and the feedback network are modelled

as a general ’two-port’ systems (see Figure 6.15), from where the series and shunt

connections are easily distinguished.

Rs

Vs rπ gmvπ ro RC2||RL

amplifier circuit

feedback circuit

RE1

RF

+

−

vπ

+

−

vout

Vf− +

Figure 6.15: A voltage amplifier with series feedback

An example amplifier structure using the voltage-series configuration is shown

in Figure 6.16. The feedback loop is implemented by connecting the collector of
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C1

Q1

VE1

RE11 kΩ

RC1 10 kΩ

VC1 Q2

RC2 5 kΩ

VCC

12 V

VE2

RF 10 kΩ

RE2 2 kΩ

VC2

20 µFCE2

Vout

Vs

Rs

RB1 1.1 MΩ

Figure 6.16: A direct-coupled pair amplifier with voltage-series feedback

the second amplifier stage to the emitter of the first amplifier stage via resistor

RF .

To see the effects of the feedback loop, the amplifier should be analysed from the

viewpoint of DC and AC operation. The DC model is redrawn for analysis pur-

poses in Figure 6.17. The analysis assumes that both of the transistors are biased

in the forward-active region. The biasing is however sensitive to the current lev-

els and either of the transistors is easily saturated in this connection. In this case,

the feedback loop affects very little to the DC biasing, because the feedback only

affects the potential VE1 and does not interfere with any significant transistor

bias current.

The circuit in Figure 6.9 has three distinct voltage nodes, labelled as VC1, VE1

and VC2. Based on Kirchhoff’s current law, the current equations for the nodes

are:

I ′E1 = IE1 + IF = (βF1 + 1)IB1 + IF

I ′C1 = IC1 + IB2 = βF1IB1 + IB2

I ′C2 = IC2 + IF = βF2IB2 + IF
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Q1

IC1

IE1

IB1

I ′C1

RC1 10 kΩ

VC1

I ′C2

IC2

IE2

IB2

Q2

RC2 5 kΩ

VC2

VE1

I ′E1

IF

VCC = 12 V

RE2 2 kΩRE1 1 kΩ

1.1 MΩ RB1

RF 10 kΩ

−
+

VBE1

−
+

VBE2

Figure 6.17: A DC model of the amplifier with voltage-series feedback

The essential currents can be expressed with the node voltages as:

I ′E1 =
VE1

RE1

; I ′C1 =
VCC − VC1

RC1

; IB1 =
VCC − VBE1 − VE1

RB1

IF =
VC2 − VE1

RF

; I ′C2 =
VCC − VC2

RC2

; IB2 =
VC1 − VBE2

RE2(βF2 + 1)
.

Substitutions of the voltage equations into the current equations leads to the

following three equations

VE1

RE1

= (βF1 + 1)
VCC − VBE1 − VE1

RB1

+
VC2 − VE1

RF

VCC − VC1

RC1

= βF1
VCC − VBE1 − VE1

RB1

+
VC1 − VBE2

RE2(βF2 + 1)

VCC − VC2

RC2

=
βF2

βF2 + 1

VC1 − VBE2

RE2(βF2 + 1)
+

VC2 − VE1

RF

.

These equations can be organised into a matrix equation, from where each of the

node voltages can be solved using the Cramer’s rule. The matrix equation is:
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(βF1 + 1)
VCC − VBE1

RB1

VCC

RC1
+ βF1

VBE1 − VCC

RB1
+

VBE2

RE2(βF2 + 1)

VCC

RC1
+

βF2

βF2 + 1

VBE2

RE2























.

Based on this analysis, all the other biasing voltages and currents can be solved

using the magnitudes of the node voltages.

Then one proceeds towards the AC analysis. Figure 6.18 shows the complete

small-signal model of the system, but to ease out the calculations, the simplified

model of Figure 6.19 is adequate. The simplifications concern the removal of

DC-blocking capacitors and the high-valued biasing resistor RB1.

Rs

1 2
C1

RB1

3 4
rπ1

RE1

gm1vπ1

RC1

5
rπ2

RE2 CE2

6(Vout)
gm2vπ2

RC2

RF

Vs

Rs

+ −vπ2+ −vπ1

Figure 6.18: A small-signal model of the direct-coupled pair amplifier with voltage-

series feedback

Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2 gm2vπ2

4(Vout)

RC2

RF

Vs

Rs

+

−

vπ2

+ −vπ1

Figure 6.19: A simplified model for the mid-band frequencies
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The analysis approach for the voltage-series case is the same as for the current-

shunt feedback configuration. First, evaluate the feedback parameter t21 from its

own small-signal model, where the output voltage source is set to zero (Xo =

Vo = 0). This small-signal model is drawn in Figure 6.20, where the feedback

from the output voltage has been eliminated by setting the output voltage to zero.

The elimination of the output voltage enables to analyse the situation where only

the input source Vs is active and hence utilising the principle of superposition.

Rs

1 2
rπ1

RE1 RF

gm1V̂π1

RC1

3

rπ2
Vs

Rs

+

−

vπ2

+ −vπ1

Vout = 0

Figure 6.20: Small-signal model for evaluating the feedback parameter t21

The dependent controlled source is chosen to be the first current-controlled cur-

rent source and is identified in the figure and in the equations by the capitalised

notation, gm1V̂π1. The small-signal model of Figure 6.20 is mapped to the fol-

lowing matrix representation, where the admittance terms are collected to the

main matrix and the current source terms are placed into the current vector.

The voltage nodes in the voltage vector are the variables to be solved from this

equation.













1
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+
1

rπ1
− 1

rπ1
0

− 1

rπ1

1

rπ1
+

1

RE1

+
1

RF

0

0 0
1

RC1

+
1

rπ2













×












V1

V2

V3












=












Vs

Rs

gm1V̂π1

−gm1V̂π1












(6.27)

For evaluation purposes it is convenient that all controlled source terms from the

current vector are moved to the admittance matrix. Because the matrix equa-

tion is just a set of linear equations, the controlled source terms are subtracted

or added to both sides of the equation. It is also necessary to identify to which
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voltage node variables the controlled source term relates to. Based on this dis-

cussion, the matrix equation (6.28) is readily modified in the desired form.














1

Rs

+
1

rπ1
− 1

rπ1
0

−βF1 + 1

rπ1

βF1 + 1

rπ1
+

1

RE1

+
1

RF

0

βF1

rπ1
−βF1

rπ1

1

RC1

+
1

rπ2














×












V1

V2

V3












=












Vs

Rs

0

0












(6.28)

Since vπ1 is not directly any node variable, it has to be calculated as the difference

V1 − V2. The feedback parameter t21 is then found to be

t21 =
vπ1
Vs

=
V1 − V2

Vs

=
rπ1(RE1 +RF )

(rπ1 +Rs)(RF +RE1) + (βF1 + 1)RE1RF

. (6.29)

As already noted, as a single parameter the t21 does not tell much about the

properties of the circuit. Because the aim is to find the expressions for β and T ,

the battle with the equations continues. For evaluating T and t12 the input source

needs to be suppressed (Xs = Vs) and let the output source be active in turn. The

small-signal model of Figure 6.21 provides a suitable model for the job.

Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2 gm2vπ2

4(Vout)

RC2

RF

+

−

vπ2

+ −vπ1

Vs

Rs

= 0

Figure 6.21: Small-signal model for feedback parameters T and t12

From this model, the following matrix equation is written:
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.

To ease out the evaluation process, all but one of the dependent controlled source

terms are moved from the current vector to the admittance matrix. After moving

the terms, the node variables are ready to be solved from matrix equation using

the Cramer’s rule.
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.

To find the return ratio T , the fraction − vπ1

V̂π1

needs to be solved. The result of the

lengthy calculation is

T =
βF1RC1βF2RC2

RC1 + rπ2

RE1

(RC2 +RE1 +RF )(Rs + rπ1) + (βF1 + 1)RE1(RC2 +RF )
.

The same circuit model can be reused to evaluate the feedback parameter t12,

which is defined as
V4

V̂π1

. The equation for t12 is

t12 =
βF1RC1βF2RC2

RC1 + rπ2

1

rπ1
[(rπ1 +Rs)(RF +RE1) + (βF1 + 1)RE1RF ]

(RC2 +RE1 +RF )(Rs + rπ1) + (βF1 + 1)RE1(RC2 +RF )
.

The t22 parameter is obtained by dividing T by t12. Hence,

t22 = − T

t12
= − rπ1RE1

(rπ1 +Rs)(RF +RE1) + (βF1 + 1)RE1RF

.
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Then finally the feedback factor β is obtained by dividing t22 by t21 and the result

of this calculation is

β =
t22
t21

= − RE1

RE1 +RF

.

So here we got the expected result, which could have been guessed by directly

looking at the circuit diagram. Here one did not even need to make any simpli-

fications during the evaluation process, therefore the resistive feedback network

does not interact with any of the surrounding passive components. One interest-

ing fact is that the feedback factor is negative in this case. This actually a good

thing because the output voltage in this circuit is connected as positive feedback

to the emitter of the first transistor. From there the signal is inverted to the in-

put side and from there comes the minus sign. In the current-shunt example

the output signal was already inverted with respect to the input, that is why the

feedback factor there was positive.

Finally the input impedance of the voltage-series feedback circuit is analysed just

for the sake of completeness. Following the standard procedure, the dead-system

impedance is evaluated from the model where the dependent controlled source

is suppressed. This model is drawn into Figure 6.22.

Rs

1 2
rπ1

RE1 RC1 rπ2 gm2vπ2

3(Vout)

RC2

RF

Vs

Rs

+

−

vπ2

+ −vπ1

Figure 6.22: Small-signal model for evaluating the input impedance

By direct inspection one can easily see that the dead-system input impedance,

when looking into the amplifier input terminals, is rπ1 + RE1||(RF + RC2). The

middle part of the circuit is completely isolated and connected to ground, so the

potential between RC1 and rπ2 is at the ground level. Note that if the dependent

source had been chosen to be the second one, the resulting equation for the input

impedance would have been different. This is a bit difficult to accept, since the

main feedback parameters, T , AOL and β are the same even when choosing the
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second controlled source as the dependent one.

Anyway, next one needs to analyse the situations for Rs → ∞ and Rs → 0 in the

expression of the return ratio. Setting Rs = ∞ results to T = 0 and Rs = 0 results

to a reasonable value. Hence, the input impedance with feedback is defined as

ZIF = ZID(1 + T (Rs → 0)), where

T (Rs → 0) =
βF1RC1βF2RC2

RC1 + rπ2

RE1

(RC2 +RE1 +RF )rπ1 + (βF1 + 1)RE1(RC2 +RF )
.

A direct conclusion is that voltage-series type of feedback increases the input

impedance by the factor of (1 + T ). However, according to this analysis, the

effect of the emitter follower, which also increases the input impedance, is lost

when the global feedback loop is applied. This conclusion might be wrong, if a

mistake was made when analysing the dead-system input impedance.

From another point of view, Figure 6.23 indicates a situation where the Miller

theorem is used to break the feedback loop into two separate resistors.

C1

Q1

VE1

RE11 kΩ

RF

1− VC2

VE1

RC1 10 kΩ

VC1 Q2

RC2 5 kΩ

VCC

9 V

VE2

VC2 Vout

RF

1− VE1

VC2

RE2 2 kΩ 20 µFCE2

Vs

Rs

RB1 1.1 MΩ

Figure 6.23: The feedback impedance split according to the Miller theorem

The rescaled feedback resistor RF appears in parallel with the load resistor (look

at RC2 in the small-signal model in this case) and also in parallel with the emitter

resistor RE1. The positive feedback reflects RF as negative impedance in parallel

with RE1. This negative impedance increases the total emitter resistance. The
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final step towards negative feedback to the input terminals is arranged as a local

feedback loop from the emitter of Q1.

The concepts global and local feedback basically relate to the amount of compo-

nents which the feedback loop encloses within. If the feedback loop is taken from

the output to the input over one single transistor, the feedback is localised and

therefore the feedback is commonly referred to as local feedback. If the feedback

loop extends over a complete circuit stage with several amplifier elements, then

the feedback is categorised as global feedback.

Both of the examples already given in this context are more or less examining

the feedback in the global scope, although the voltage-series example was a com-

bination of global and local feedback networks. The most common type of local

feedback is found from a simple single-stage BJT amplifier with an emitter resis-

tor, which is drawn in Figure 6.24. In practical transistor amplifiers the emitter

resistor is typically bypassed for AC-signals with a capacitor, but when the ca-

pacitor is not there, the effective input signal is facing a feedback loop from the

emitter to the input.

RE

RC

Vin

Vout

VCC

Figure 6.24: A BJT amplifier with an unbypassed emitter resistor

Figure 6.25 shows a small-signal model of the common-emitter amplifier and

indicates that the local feedback structure of an unbypassed CE-stage is of the

series-series type, where the current from the output is sampled and converted

into voltage in the feedback loop. The voltage due to the output current over

the emitter resistor is therefore seen as inverted voltage at the input side of the

transistor.
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Rs

Vs rπ gmvπ ro RC1||RL

amplifier circuit

feedback circuit

RE1

+

−

vπ

ioutVf− +

Figure 6.25: A series-series feedback network of the BJT with an emitter resistor

6.2.4 A SPICE model for the fuzz circuit

The fuzz circuit schematic shown in Figure 6.26 was redrawn with the gschem

schematic editor, from where it is easy to prepare a netlist for SPICE simulations.

The schematic includes all the components assigned with their actual values. The

potentiometers R4 and R6 are split into two separate resistors so that the voltage

divider functionality can be simulated by changing simultaneously the values of

the two resistors.

In addition to the real resistor and capacitor values, all other necessary com-

ponent parameters, such as transistor gains and saturation currents, need to be

defined in gschem so that it would be straightforward to generate a complete

netlist for ngspice simulations. The way to assign these additional model pa-

rameters is explained in section 1.3.12. The signal source parameters should

also be defined to suit both direct current and alternative current simulations.

When using the gEDA design tools collection in Linux, the netlist for SPICE is

created from the schematic of Figure 6.26 by using the command

gnetlist -g spice-sdb -o fuzz_net.net fuzz.sch

where the output file named as fuzz_net.net is obtained from the schematic file

fuzz.sch. Because the fuzz circuit has only a small amount of components, the

barebone netlist looks relatively simple, but ...
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R5

100k

B

C

E

Q1
AC 128

P N

C1

2.2uF

R1 33k

R3

470

R2 8.2k

B

C

E

Q2
AC 128

P
N

C3
20uF

0.01uF

C2

9

3

6

2

4

10

 

 

+
−

V1
DC 9

5

8

R61 500

R62 500

R41 250k

R42 250k

7

RS 5k

Vin

DC 0 AC 1 SIN(0 0.01 440)

0

11

1

 

Figure 6.26: The fuzz schematic drawn with gschem

*============== Begin SPICE netlist of main design ============

Vin 8 11 DC 0 AC 1 SIN(0 0.01 440)

RS 11 1 5k

R42 8 7 250k

R41 7 10 250k

R62 8 9 500

R61 9 4 500

V1 8 0 DC 9

C2 6 10 0.01uF

C3 8 9 20uF

Q2 5 3 4 AC128

R2 6 5 8.2k

R3 0 6 470

R1 3 0 33k

C1 1 2 2.2uF

Q1 3 2 8 AC128

.MODEL AC128 PNP (???)

R5 2 4 100k

.end

... there is still one problem to solve. The component model for the AC 128 BJT

is deliberately replaced with question marks because there is no official model

available. The SPICE model for this component needs to be defined by other

means.
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The corner stone to simulate the fuzz effect is to have a realistic component

model for the old and leaky germanium transistors. For a novice junior scien-

tist, it is quite difficult to start creating a SPICE model to depict the behaviour

of germanium transistors. More difficulties arise from the fact that the default

transistor parameters in SPICE are aimed to model an average silicon transistor,

since all discrete transistors are nowadays made of silicon.

Because the aim is to run simulations at audio frequencies, one can neglect the

differences of germanium and silicon transistors in the high-frequency range.

These high-frequency differences are mainly due to the junction capacitances,

which in germanium transistors limit the high-frequency response quite signifi-

cantly.

After neglecting the high-frequency properties, the only things to be determined

are the parameters that control the DC behaviour of the transistor. These param-

eters in SPICE3 standard used by ngspice are the saturation current parameter

’IS’, forward current gain control parameters ‘BF’, ‘NF’, ‘ISE’, ‘IKF’, and ‘NE’, the

corresponding reverse current gain control parameters ‘BR’, ‘NR’, ‘ISC’, ‘IKR’ and

‘NC’, and the Early voltages ‘VAF’ and ‘VAR’ for the forward- and reverse-active

modes respectively.

These parameters control the curves of collector bias current IC and base bias

current IB, which change as a function of the base-to-emitter voltage VBE. In

simplified manual calculations, these curves are expected to behave in a similar

fashion since the forward current gain factor βF is assumed to be constant so

that the relation IC = βF IB holds at all times. To replicate this simple ’constant

βF ’ model in SPICE, the only parameters that need to be defined are IS, BF and

VAF for the forward-active mode. The parameters that are left undefined in the

SPICE model will take the default values, which should support the ’constant βF ’

approach.

In reality, βF changes for different values of IC , and this dependency between βF

and IC is clearly indicated in every BJT datasheet one can find. For very low and

very high values of IC , the current gain factor βF is lower than it is in the middle

range of the IC values. In SPICE3 based simulation programs it is possible to

simulate this situation by defining the extra leakage parameters ISE, ISC along

with NE and NC and the high current roll-off parameters IKF and IKR. Figure

6.27 explains the meaning of these extra parameters.
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Figure 6.27: SPICE parameters controlling βF

With reference to Figure 6.27, IS is the y-axis intercept point of the IC curve at

VBE = 0, and NF defines the slope of the line. In SPICE, NF is commonly assumed

to have a value of 1, although some BJT SPICE models set NF as slightly larger

than one. The leakage currents at low values of collector current introduce an

additional slope to the plot of IB. This effect can be controlled by the parameters

ISE and NE. IKF controls the point where βF starts to drop at high collector

currents due to the internal resistances of the transistor pn-junctions.

The primary step for modelling a certain transistor is to find a datasheet for it.

The AC 128 is still in production at the time of writing and one relatively informa-

tive datasheet by Valvo Radioröhrenfabrik GmbH was found from their Internet

databases. The datasheet does not contain any predefined SPICE model, so one

needs to construct the model based on the curves presented in the datasheet. An

example to extract SPICE parameters from BJT datasheets is given by N. Malik

[70], and that procedure is adapted partially also in this case.

The best way to get started is to set a few basic parameters for DC operation

and see how the fuzz circuit biases with those parameters. The most important

parameters to start with are the saturation current IS and the forward active

mode current gain factor βF (sometimes also referred to as hFE). The average

peak current gain of AC 128 is mentioned in the datasheet as βF = 90, and it

stays at this level in the range from IC = 50 mA to IC = 450 mA. Outside of this

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



6.2 FUZZ BOX VOODOO 329

given range of collector current, the value of βF is slightly lower. The saturation

current is not stated explicitly but it can be determined graphically from the

graph of IC versus VBE given in the datasheet.

The simplest way is to pick one point close to the operating point value of IC and

make use of the formula defined in the SPICE2 standard, where

IC ≈ ISe

(

VBE
NF VT

)

(

1 +
VCE

VAF

)

.

This equation is given by Sedra [71, p. 146] as a first order approximation

of the Gummel-Poon collector current SPICE equation for BJTs. More detailed

equations for SPICE2 are given by Nagel [72], and for SPICE3 by Steer [73],

for example. These documents are available in .pdf format for reading on the

Internet. For further approximations, the Early voltage VAF can be set to infinity

so that the expression for the collector current is then almost identical to the

so-called Shockley equation for diodes. The following analysis uses this more

radical approximation of

IC ≈ IE ≈ ISe

(

VBE
NF VT

)

from where

IS ≈ IEe

(

−VBE
NF VT

)

.

The data of an average IE - VBE curve was determined from the graph of the

AC 128 datasheet by tabulating the values of IC on constant increments of VBE.

The collected data is plotted in Figure 6.28 to show what kind of a device we are

dealing with.

The exponential curve in Figure 6.28 is drawn through the points determined

from the datasheet and the same points are also drawn after taking a logarithm

from the values of IE. A linear fit is applied to the logarithmic points and from

the y-axis intersect one can determine the saturation current IS. According to

the graph, a typical saturation current for AC 128 seems to be about 20 µA. The

datasheet also provides deviation graphs, which indicate that the saturation cur-

rent can be inside a range of 9−25 µA. These are very high values in comparison

to the values of silicon BJTs, which typically have the saturation current as 10−14

amperes in the order of magnitude.

Additionally, the Early voltage VA can also be determined from the graphs given

in the AC 128 datasheet. Figure 6.29 depicts the idea of graphically determining

the Early voltage from a given set of VCE – IC – IB curves. The Early voltage
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Figure 6.28: Determining the saturation current from a datasheet
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is the x-axis intercept point of the continued IB curves. In this case, VAF was

approximated to be −40 V for the AC 128 germanium transistor. This value is set

as a positive value to the SPICE parameter VAF.

Now all the basic parameters are determined and the AC 128 BJT model can be
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tested in SPICE with the values IS = 20e−6, BF = 90, VAF = 40 and NF = 1. The

simplest way to test the rationality of the model is to create a circuit diagram that

depicts the actual situation to define the IE – VBE and IC – VCE graphs. Figures

6.30a and 6.30b show simple circuits for this purpose. The measurement setup

to determine the IC – VCE characteristics is often referred to as a curve tracer

arrangement [71, p. 149].
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(b) Curve tracer circuit

Figure 6.30: Circuits to simulate BJT characteristics

The SPICE input files are created from these circuits using a gnetlist command,

and a command sequence for running a specific set of simulations is placed to

both netlist files. The primary interest is to see whether the defined values lead

to a similar IE – VBE dependency in the simulation as in the datasheet graph.

The complete simulation file for the circuit in Figure 6.30a is

.control

dc VBE 0.075V 0.180V 0.005V

gnuplot saturat -dc1.I(VBE)

.endc

*============== Begin SPICE netlist of main design ============

VBE 1 0 DC 9

Q1 0 0 1 PNP1

.MODEL PNP1 PNP (IS=20u BF=90 VAF=40 NF=1)

.end

where a DC sweep with increments of 0.005 V is made for the DC source acting

as the potential difference VBE. The current values measured from that source

indicate the current IE, which is eventually plotted as a function of VBE. The

simulation result was in agreement with the datasheet curve, so after this test

the model is still acceptable.
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Next comes the curve tracer test. In the SPICE simulation, the voltage source is

given a DC sweep from 0 V to 9 V and the current source is swept from 1 mA to

10 mA.

.control

dc V1 0V 9V 1mV Ib 1m 10m 1m

.endc

*============== Begin SPICE netlist of main design ============

Ib 2 0 DC 1mA

V1 1 0 DC 9

Q1 0 2 1 PNP1

.MODEL PNP1 PNP (IS=20u NF=1 BF=90 VAF=40)

.end

The resulting set of curves are in accordance with the datasheet. Based on these

two tests, the model is a good representation of the AC 128 bipolar junction

transistor. The next step is to use this model in the actual fuzz circuit description

file, which was presented in the same context with the gschem schematic drawing

6.26. To test the DC bias voltages of the circuit, it is enough to run the operating

point (OP) analysis for the fuzz circuit netlist. The simplest way to run this

analysis is to add a new line at the end of the SPICE circuit description file and

write ’.OP’ there. Then run the analysis using the command

ngspice -b fuzz_net.net

and the operating point information is printed to the screen.

From the operating point information it is easy to see that the model is not work-

ing correctly in the actual fuzz circuit because in the stable biasing state the VBE

of Q2 is only about 0.02 V. The model needs to be extended to cover the leakage

currents ICB0 and IEB0, which refer to the collector and emitter currents when

the transistor is in a cut-off state. According to the datasheet, these currents can

be as high as 20 µA but typically about 4 µA at room temperature. This value is

almost of the same order of magnitude as the saturation current IS, so it plays

a significant role in the SPICE model. Along with these cut-off currents, one

needs to define a reverse current gain factor βR, which is much smaller than the

forward current gain, typically in the range from 1 to 5.

The test circuits for determining the leakage currents ICB0 and IEB0 are presented

in Figure 6.31. The tweaking of the leakage currents started a long sequence of

trial and error. Basically it has to be admitted that without knowing the true

VBE that was measured from the prototype circuit, these empirically determined
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Figure 6.31: Circuits for measuring leakage currents ICB0 and IEB0

SPICE parameters would never have given a realistic behaviour of the fuzz cir-

cuit. This is because both of the transistors in the fuzz circuit are biased so close

to the saturation and cut-off states where the leakage effects and other anomalies

have a relatively large effect on the bias voltages of the circuit. Eventually, after

several hundred rounds of tweaking the leakage values and testing the model

with the saturation, curve tracer and leakage measurement circuits, a model of

.MODEL AC128 PNP (IS=10u NF=1 NR=1 ISE=0.5u ISC=1u NC=1.5 NE=1.5 BF=90

+ BR=5 VAF=40 VAR=40 EG=0.67 VJE=0.25 VJC=0.25 VJS=0.25)

was accepted. The parameter values of VAR, EG, VJE, VJC and VJS have been

included as theoretical values for the sake of ’completeness’, but they do not

have any effect on the biasing. This model gives a VBE of about 0.09 V in the fuzz

circuit, the ICB0 is around 3.5 µA and the set of curves given by the curve tracer

are in a relatively good agreement with the graph presented in the datasheet.

With the accepted model, the saturation curve is still a little bit out of range from

the nominal curves given in the datasheet. Figure 6.32 shows the extreme curves

along with the medium curve obtained from the datasheet, and the accepted

SPICE model ends up a bit outside the right extreme curve. After all the effort

put into this, this will have to do.

Another way to reach VBE ≈ 0.1 V is simply to adjust NF to 0.5, which is half of

the default value, and then take IS somewhere around 10−8. This kind of model is

basically justified since in [15, p. 49] it is written that in germanium diodes IS is a

couple of orders of magnitude larger than in silicone diodes and that NF is about

half the value of silicone diodes. In the same reference it says that VD ≈ 0.2,

whereas silicon diodes have VD ≈ 0.6. It has to be emphasised that the results

obtained from this approach are not in agreement with the datasheet curves,
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Figure 6.32: The accepted model against the datasheet expectations

but the alternative method works as a simple approximation. More theoretical

information about the differences of germanium and silicon transistors is given

in old transistor circuit analysis books, such as [74], [75] and [67].

The actual simulations with the fuzz circuit concern the operating point analysis

for the transistors and a frequency response (AC) analysis with different values

of potentiometer R6. Also a transient analysis needs to be run with different

values of the input voltage level to show the actual waveform obtained from the

simulated circuit. To run all of these analyses automatically with a single netlist

file, the following control parameters are added to the beginning of the netlist

file.

.control

ac dec 90 10 100K

alter R61 100

alter R62 900

ac dec 90 10 100K

alter R61 900

alter R62 100

ac dec 90 10 100K

set filetype=ascii

write fuzzdata.txt db(ac1.v(7)) db(ac2.v(7)) db(ac3.v(7))

gnuplot fuzz_ac db(ac1.v(7)) db(ac2.v(7)) db(ac3.v(7))
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alter R61 200

alter R62 800

tran 1us 30ms

alter Vin sin [ 0 0.1 440 ]

tran 1us 30ms

gnuplot fuzz_tran tran3.v(7) tran4.v(7)

.endc

.OP

Once the control parameters are in place, the actual simulation run is started

from the command line with the command

ngspice -b fuzz_net.net

This command starts to read the command sequence from the netlist file, which

runs the analyses automatically and stores the results into the files specified in

the netlist commands. The results for the operating point DC voltages are printed

to the command line terminal at the end of the analysis. It has to be noted that

the gnuplot command does not work properly with version 20 of ngspice but

it creates nice data files for further processing. The command sequence also

includes a command for writing the results into an ASCII encoded text file, but

for plotting purposes the data file created by the gnuplot command is better.

6.2.5 Results of simulations, calculations and measurements

Regarding the transistor bias analysis of section 6.2.1, the component values

from schematic 6.2 were inserted to the equations. The numerical results were

obtained for all transistor pin voltages and for the voltage node enumerated as

6 in Figure 6.3. The internal potential difference VBE of the AC 128 transis-

tors in the fuzz circuit was measured with a multimeter to be approximately

0.1 V, and this value was also used in the theoretical calculations. The measured

base-emitter voltage matches relatively well to the approximation made from the

graphs of the datasheet when using a 1 mA collector bias current.

For the SPICE simulation part, the netlist from the circuit in Figure 6.26 was

loaded into ngspice and analysed with the operating point (.OP) command,

which was written inside the netlist file. The simulation results for DC quies-

cent voltages were read directly from the output listing provided by ngspice.

For measurement purposes, the fuzz circuit using AC 128 transistors and 10 %

precision carbon composition resistors and electrolytic capacitors was built onto
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a small solderless breadboard, a.k.a. a plugboard, where the components can be

replaced easily just by plugging them to the board. A regular multimeter was

used to measure the transistors’ quiescent voltages.

The data of the simulated, calculated and measured quiescent voltages in the

static configuration are tabulated in Table 6.1 for comparison purposes. The

Table 6.1: Fuzz circuit quiescent voltages

value simulated calculated measured

VB1 8.91 8.90 8.92

VC1 8.49 8.51 8.49

VE1 9.00 9.00 9.02

VB2 8.49 8.51 8.49

VC2 3.60 3.30 3.80

VE2 8.58 8.61 8.62

V6 0.20 0.18 0.21

results seem to be relatively equal, except for the collector voltage VC2 of transis-

tor Q2. Most likely this difference appears because of the leakage current of the

AC 128 transistors since small changes in ISE and ISC parameters had a signifi-

cant effect on this value in the SPICE simulation. The actual AC 128 transistors

were bought ’off the shelf’ from a nearby electronics store and they were used as

is. At least one out of four transistors did not eventually work in this circuit at

all, so manual selection is often needed when using these old germanium tran-

sistors. Based on the amount of tweaking needed for the SPICE model to work

correctly, the manual calculation in this case is the more effortless way to obtain

reasonably accurate results.

Electronics designers did not have SPICE in the 60’s when the fuzz effect cir-

cuit was designed. It is therefore clear that the designer calculated the biasing

conditions manually just by taking the βF as 90 from the datasheet and approxi-

mating the order of magnitude of the collector currents in order to get the value

of VBE ≈ 0.1 volts from the datasheet. The AC 128 is primarily intended to be

used in power amplifier applications. When used in a battery operated circuit,

the low collector currents result in a low value of VBE. This is why in the case of

the fuzz effect one cannot assume typical VBE ≈ 0.2 volts. Was this intentional

from the designer to use a power amplifier with low currents, who knows, but
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the main thing is that the effect works like a charm.

The AC analysis of the fuzz circuit is not very informative because the DC clipping

of the signal also distorts the frequency response of the circuit. The frequency

content of the clipped waveform is much more rich in the harmonic upper par-

tials, and this is not seen from the results of the analytical AC analysis. Only if

the high-frequency cut-off starts early in the frequency response curves given by

the AC analysis, then one knows that part of the high-frequency harmonic con-

tent created by clipping the signal is damped out at the output of the fuzz. This

would indicate that the full potential of the circuit is not unleashed.

It is anyhow interesting to simulate how the adjustment of the ’fuzz’ level via

potentiometer R6 affects the amplification and the low-frequency response of

the circuit. Figure 6.33 depicts the effect of three different adjustments of R6 to
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Figure 6.33: Comparing the fuzz data from the simulations and manual calculations

the general frequency response. It is easy to notice that the manual calculations

have the same shape with the ngspice simulated results, but the gain values are

different. This is because of the added leakage parameters, which reduce the full

amplification potential of the circuit.

The frequency response measurements on the prototype circuit were not done

because it was not seen as feasible due to the heavy clipping of the signal. The

simulation results indicate that the ’fuzz’ potentiometer should be a logarithmic
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pot, since the gain does not change linearly with the resistance value of R6. One

evident conclusion is also that a lower value of R6 causes a higher level of gain.

A SPICE transient simulation was also applied to the fuzz circuit to find out

the actual response waveform of the circuit to simple sine wave input signals.

These simulations can be compared to the actual input-output prototype mea-

surements, which were done using a digital storage oscilloscope. The benefit of

using such a scope is that it can store the data in a comma separated list (.csv)

format for later plotting.

Figure 6.34 reveals the simulated response of the fuzz circuit for sinusoidal test

signals of different levels. In the simulation setup, the volume potentiometer was

set close to the maximum, and R6 was set so that R61 = 200 Ω and R62 = 800 Ω.

This setting brings more gain to the system as already noticed from the frequency

response curves, and therefore it also indicates the fuzz feature more clearly in

the low signal levels. The test signal had a frequency of 440 Hz and the signal

voltage levels were 10 mV and 100 mV so as to imitate the true output signal

levels from a typical electric guitar with single-coil pickups. As seen in Figure

6.34, the ground level of the circuit is 9.0 volts because of the need to use inverted

operation voltages for pnp transistors.
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Figure 6.34: A transient fuzz simulation using a sinusoidal input signal

The distinctive difference between the low and high level responses was found
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to be asymmetric clipping of the top and bottom parts of the low level signals,

whereas higher level signals were clipped more symmetrically from the top and

bottom. According to the simulations, the range between the points where the

signal starts to be chopped off from the top and bottom or not clipped at all is

quite narrow, in the order of a few millivolts. Because of the asymmetric clipping,

a skilled guitar player can control the effect by the style of playing, since softly

played notes are distorted differently from hard hammered notes. This gives a

third dimension for controlling the fuzz effect device.

The general scope of the measurements on the do-it-yourself prototype device

was to roughly verify the correlation between the simulations based on mathe-

matical models and the real world prototype response to a sinusoidal test signal.

The signal source used for the measurements was chosen to be a real electric

guitar, Ibanez GRG 170 DXL equipped with two humbucker pickups and one

single-coil pickup. The signal from the guitar was generated by playing a fin-

gered note on the B-string close to the 12th fret of the fretboard and using the

humbucker pickups closest to the fretboard. This combination created a rela-

tively clean sine wave with a frequency quite close to 440 Hz. This frequency

was chosen to match closely to the simulations, where the pure sine wave is the

easiest test signal to generate.

The first thing that was noticed in the prototype measurements was that when

an electric guitar was used as the signal source, the fuzz circuit itself had some

kind of a loading effect on the waveform of the signal. This is basically expected,

since the current-shunt feedback configuration in the fuzz circuit decreases the

input impedance and therefore draws more current from the pickup circuitry of

the guitar. Figure 6.35 shows the difference by comparing a direct measurement

at the end of the guitar cable before and after connecting the cable to the fuzz

input jack. It might also be a case where the second transistor clips the signal by

saturation and causes some distortion also at the input. But this theory is purely

speculation.

The actual measurements simply tried to verify the similarity to the simulated

waveforms presented in Figure 6.34. The potentiometers of the fuzz prototype

were set to a level where the output potentiometer was giving full output, and

the potentiometer controlling the level of the fuzz was set so that the level of fuzz

is close to maximum. This setup was trying to imitate the settings used in the

transient simulations but the accurate values used in the measurements for the

fuzz level control potentiometer were not measured. This measurement setup
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Figure 6.35: The change in the input voltage due to fuzz circuit loading

might therefore have been slightly different compared to the simulation setup.

For hard hammered notes, where the input signal level is high, the measured

waveform from the prototype came out according to Figure 6.36. It was quite

amazing to see that the measurements on a prototype circuit gave almost exactly

the same output waveform as in the simulation results. The output level of the

signal was also in a relatively good agreement with the simulated results. The

output signal in the prototype measurements stayed longer in the low state than

in the simulations. This was due to the signal distortion observed already at the

input.

For softly played notes, there were some differences noticed when comparing to

the simulated results. The asymmetrical clipping was more distinct in the actual

prototype and the range between full clipping and no clipping was clearly wider

than in the simulations. In any case, the resemblance of the waveforms in the

asymmetrical clipping state is still quite amazing. In Figure 6.37 one can see

that with an approximately 1 mV input signal the signal is clipped only from the

bottom part and the top part is reproduced without clipping. This indicates that

the prototype circuit had probably more gain than the simulated circuit, or that

the leakage currents behaved differently in the prototype.

The previous measurements were made directly from the output terminals of the
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Figure 6.36: Heavy clipping with a large input voltage level
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Figure 6.37: Soft clipping with a small input level

fuzz device when there was no cable attached to the output jack. Previously it

was already noticed that the fuzz circuit itself created a loading effect on the
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signal from the guitar. The situation is similar at the output terminals of the

fuzz circuit. A cable connection from the fuzz circuit to an amplifier causes a

distinct difference in the output signal of the fuzz effect. The measured waveform

in the output terminals of the fuzz circuit changes as indicated in Figure 6.38.

This means that the measurement results have a dependency on the external

connections on the fuzz circuit.
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Figure 6.38: The effect of the amplifier connection

One important fact to point out is that a computer sound card is not a reliable

measurement device. In the case of the fuzz effect, the output signal is clipped to

look almost like a square wave. Square waves of low audio frequencies cannot

be measured reliably with a sound card because the input terminal of the sound

card includes a capacitor that alters the DC level signal at the top and bottom of

the square wave waveform.

6.3 Tremolo = amplitude modulation

The tremolo effect creates a sensation of oscillating volume control, which in

technical terms means amplitude modulation of the input signal. The terms

tremolo and vibrato are often mixed together to mean the same thing, but whereas
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tremolo refers to the oscillating volume, vibrato is specified as the oscillating fre-

quency. A common method in electrical engineering to generate an amplitude

modulated signal is to modify the amplifier supply voltage to alter the gain. This

produces an ’envelope’ where the higher frequency is closed inside the frames of

the lower frequency [14, p. 574].

According to the theory of amplitude modulation, the original signal sinωct and

the modulating signal sinωmt are mixed together to form a modulated signal,

M(t) = (1 + α sinωmt) sinωct, (6.30)

where α is a numeric value between 0 and 1 and it is known as the modulation

index. Generally it is assumed that sinωmt < sinωct, i.e. the modulating signal is

of much lower frequency than the original signal. Amplitude modulation is most

commonly used in radio frequency applications where the signal of the higher

frequency is named as a carrier signal. This naming convention is also used

consistently in this context with subscript c, although it is quite misleading for an

audio effect application.

From equation (6.30) it is evident that the mixing in amplitude modulation is

done by multiplication, not as a regular sum. However, multiplication is not the

only way to create modulated signals. According to the trigonometric identity

between products and sums,

sinωc sinωm =
1

2
[cos(ωc − ωm)− cos(ωc + ωm)], (6.31)

the multiplication can be replaced by a sum where a difference and a sum of

frequencies, i.e. ωc − ωm and ωc + ωm, are added together.

Figure 6.39 depicts different ways to create a modulated signal using a mixture

of multiplication and sums. The signals in the figure have functional descriptions

fm(ωmt) = sin(2πt) and fc(ωct) = sin(2π20t),

with a reference to the modulating signal and the carrier signal respectively, the

carrier having a distinctly higher frequency. The notations fc−m and fc+m refer

to the sums arising from the product fc · fm. If the modulation is taken as a di-

rect product, the modulated signal M(t) is at its smallest peak-to-peak amplitude

when the modulating signal fm(t) is close to zero. This is seen in the left side

graphs of Figure 6.39. The right side graphs present the modulation as defined

by equation (6.30). The most attenuated amplitude of the modulated signal M(t)
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fc(t) · fm(t)

fc

fm

fc(t) + fc(t) · fm(t)

fc

fm

fc−m(t)− fc+m(t)

fc−m

fc+m

fc(t) + fc−m(t)− fc+m(t)

fc

fc−m

fc+m

Figure 6.39: Four ways to set up amplitude modulation

occurs when the modulating signal fm(t) has a negative maximum, and the max-

imum peak-to-peak amplitude of the modulated signal M(t) is obtained with a

positive maximum value of the modulating signal fm(t).

Amplitude modulation is fundamental stuff in the theory of signal processing

and it will surely create a cool sound effect, but how to realise multiplication of

signals with resistors, capacitors and transistors? The schematic 6.40 of a simple

tremolo effect will answer this question, at least after it is thoroughly analysed.

The schematic has been adopted from the Tonepad website [76], where at the

time of writing it is readily available for everyone as a do-it-yourself vintage

effect project. Apparently this circuit has originally appeared as a project article

in an electronics magazine, ’Electronics Australia’, which has not been published

anymore in recent years. This simple schematic contains many interesting details

of basic electronics in action, so that is why a detailed analysis of the circuit is in

order. A general description of the circuit is given now and extended later in the

following sections.

So how does the tremolo circuit actually work? The input signal travels a very

short path to the output through one buffering transistor Q1, which has a quite

minimalistic gain. The output signal is taken from the potentiometer R7 where

the voltage division only affects the amplitude of the output voltage, and not in
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Figure 6.40: A circuit diagram of the tremolo effect

any frequency dependent property of the circuit. The gain of the transistor Q1 is

designed to keep the output signal almost on the same level as the input signal.

The actual modulating signal is created with the bipolar junction transistor Q3,

which is hooked up in an oscillator configuration. The frequency of the modu-

lation signal can be adjusted from 2 Hz to 8 Hz with potentiometer R15 so that

there are only a few full vibrational periods within a second interval. The in-

depth analysis of this so-called RC phase-shift oscillator is treated separately as a

side effect since it seemed to be quite a fascinating realisation of a simple audio

frequency oscillator.

The modulation signal is connected to the input signal via a junction field-effect

transistor (JFET) J2, which is biased in the ohmic region by setting the drain-

to-source DC potential difference VDS to zero with capacitor C5. In the ohmic

region, the JFET can be used as a voltage-controlled resistor. The modulation

signal controls the gate voltage vGS of JFET J2, which thereby changes its resis-

tance as a function of the modulating voltage. The details of using a JFET as a
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resistor are treated in a separate side effect section.

Eventually the change in the emitter resistance of transistor Q1 due to JFET J2

modifies the AC amplification factor of Q1 at the rate of the oscillation produced

with Q3. This generates the modulation effect according to equation (6.30). The

modulation depth can be controlled with potentiometer R10, which affects the

self-biasing configuration of J2.

6.3.1 The DC bias analysis of the tremolo effect

The analytical biasing calculations for transistor Q1 can be handled with equation

(1.91), which was presented already in the introductory section 1.3.9. In the

static DC configuration, the JFET J2 is hidden behind the capacitor C5 so that it

will have no effect on the quiescent voltages of Q1. The biasing of this circuit is

set like a textbook example of a basic common emitter amplifier, and therefore

no distortion is expected out of this effect.

To find out the biasing currents and voltages of the BJT Q3, some new equations

are still needed in addition to what is presented in section 1.3.9. This time the

JFET J2 and the potentiometer R10 controlling the modulation depth are hidden

behind the capacitor C4 and are therefore not affecting the DC biasing of Q3. For

the voltage VC at the collector of Q3 one can write two equations,

VC = VCC − IC(R8 +R9) (6.32)

VC = VBE + IBR12 = VBE +
IC
βF

R12, (6.33)

from where one can solve an expression for the collector current,

IC =
VCC − VBE

R8 +R9 +
R12

βF

.

This current can be used to solve the base current IB and all voltages at the

terminals of Q3.

Here are all the equations that are needed to calculate the essential biasing volt-

ages by means of manual analysis. The actual component values are substituted

into these equations and the resulting voltage levels are compared to the mea-

surements and the simulation results in section 6.3.6.
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6.3.2 The AC analysis of the tremolo effect

To simplify the AC analysis of the tremolo effect, the oscillator is ruled out and

the JFET is replaced by a normal resistor RJ . By varying the value of RJ within

the analytical limits of JFET resistance, the frequency response and small-signal

amplification of the circuit can be analysed easily and without loss of accuracy.

With these simplifications, the small-signal model for the tremolo effect is as

shown in Figure 6.41. This small-signal model is almost the same as the model of

3
rπ

R5

R6

4

RJC5

5

gmvπ

R4

6 (Vout)

R7

C2

R3

2

R2

1

RS

C1

VS

RS

+ −vπ

Figure 6.41: A partial small-signal model of the tremolo circuit

the basic transistor amplifier 1.40. The only difference is the relatively complex

emitter impedance of the tremolo circuit. Although the emitter impedance could

have been included in the model as one branch without adding the extra node 4,

for manual calculations it was seen as a simplification to add the node 4.

A set of linear equations can be directly written from the small-signal model

into a matrix form. Since the nodal analysis method is used, the resistors and

capacitors are represented as admittances, which multiply the node voltages V1−
V6. The admittance matrix is of a size 6x6 and the whole equation is written as















Y11 −Y12 0 0 0 0

−Y21 Y22 −Y23 0 0 0

0 −Y32 Y33 −Y34 0 0

0 0 −Y43 Y44 0 0

0 0 0 0 Y55 −Y56

0 0 0 0 −Y65 Y66















×















V1

V2

V3

V4

V5

V6















=
















VS

RS

0

gm (V2 − V3)

0

−gm (V2 − V3)

0
















.

The admittances indicated by general subscripted notations Y11 . . . Y66 in the pre-

ceding matrix equation are given explicitly in listing (6.34).
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Y11 =
1

RS

+ jωC1 Y12 = Y21 = jωC1

Y22 =
1

rπ
+

1

R2

+
1

R3

+ jωC1 Y23 = Y32 =
1

rπ

Y33 =
1

rπ
+

1

R5

Y34 = Y43 =
1

R5

Y44 =
1

R5

+
1

R6

+
jωC5

1 + jωC5RJ

Y55 =
1

R4

+ jωC2 Y56 = Y65 = jωC2

Y66 =
1

R7

+ jωC2

(6.34)

To calculate the final form of the transfer function H(jω), the tranconductance

terms need to be moved to the admittance matrix and then Cramer’s rule is used

to solve the output voltage at node 6. This procedure has already been shown

during the AC analysis of the basic transistor amplifier in section 1.3.10, so it is

not repeated here. The resulting transfer function is similar as in the case of the

basic transistor amplifier. Because of the tremendous amount of work needed

to write open the determinants in Cramer’s rule, the manually obtained approxi-

mate model of the tremolo circuit is analysed only numerically using Octave. In

Octave or Matlab it is possible to directly solve the two determinants numeri-

cally without the need to solve a symbolical expression for the transfer function

resulting from the division of the two determinants.

To get at least some idea of how the tremolo circuit works in the frequency

domain as far as the gain is concerned, the frequency response of the circuit is

calculated for four different values of RJ , which theoretically represent the JFET

resistance at some specific gate-to-source voltage vGS. An approximate value for

the transistor’s internal resistance rπ is evaluated using equations (6.12), where

the quiescent collector current IC is obtained from the DC analysis.

According to Figure 6.42, the AC gain of the circuit changes as the resistance RJ

is varied. Small values of RJ give a higher gain than large RJ . Now we just need

to understand better how the resistance of the JFET changes with the modulation

signal, and what the actual values to be used for RJ are to comprehensively

simulate the dynamic resistance of a JFET. Because the resistor R6 is connected

parallel to the resistance depicted by RJ , the value of R6 limits the maximum

emitter resistance close to its nominal resistance when RJ is much larger than

R6. Alternatively, when resistance RJ is smaller or about equal to R6, the total

resistance of the parallel connection is defined mostly by the magnitude of RJ
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Figure 6.42: Initial analysis of the tremolo circuit frequency response

alone.

6.3.3 Side effect: the JFET as a resistor

In the tremolo effect, the multiplication operation of the main signal with the

modulating signal needed for realising equation (6.30) is done with the JFET J2.

The implementation makes use of the unique property of JFETs to act as voltage-

controlled resistors. To understand how to estimate the resistance of a JFET and

use it effectively in applications of discrete component electronics, a closer look

at the basic theory of JFETs is required.

The graph of curves representing the iD – vDS characteristics of a JFET with

different values of vGS can be roughly divided into two distinctly different areas

called the ohmic and saturation regions. Therefore, the drain current iD in a JFET

has two functional descriptions

iD =
IDSS

V 2
P

[
2(vGS − VP )vDS − v2DS

]
(1 + λvDS) (ohmic) (6.35)

iD =
IDSS

V 2
P

(vGS − VP )
2(1 + λvDS) (saturation) (6.36)

where the ohmic region is restricted by the limits (vGS > VP ; vDS < vGS−VP ) and

the saturation region is constrained with (vGS > VP ; vDS > vGS−VP ) [71, p. 214].

The parameter λ is a channel length modulation parameter, and usually this term

is so close to zero that it can be neglected. The parameter VP is the pinch-off

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



350 EFFECT DEVICES

voltage of a JFET referring to a value of VGS which fully closes the conductive

channel of the JFET, while IDSS is the saturation current when the conductive

channel is fully open at vGS = 0. These equations assume that the drain current

iD, gate-to-source voltage vGS and the drain-to-source voltage vDS are carrying

AC and DC components, as should be clear from the choice of notation.

The following analysis concentrates on the more commonly used n-type JFET,

which is always biased to operation by having the gate-to-source voltage vGS

reverse-biased. This reverse biasing means that if the source is connected to

ground, the JFET is fully open at vGS = 0 and fully closed at vGS = VP . In the

n-type JFET, VP is a negative voltage, e.g. −3 V, therefore making the gate-source

junction reverse-biased. The p-type JFET works analogously to the n-type JFET

but with changed voltage polarities.

The static analysis of JFET current-voltage characteristics using only DC compo-

nents is shown in Figure 6.43, where the drain current ID of a specific JFET with

VP = −1.8 V is drawn as a function of the drain-to-source voltage VDS for se-

lected values of gate-to-source voltage VGS. The figure also highlights the ohmic

region of the JFET with grey shading.

IDSS
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Figure 6.43: Characteristic curves of a JFET

From equation (6.35) the reciprocal value of the drain-source resistance RDS in

the ohmic region is obtained by dividing the drain current iD by the potential
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difference vDS over the drain and source. Taking the reciprocal of this quotient

and neglecting the term with λ leads to

RDS =
vDS

iD
=

V 2
P

IDSS [2(vGS − VP )− vDS]
. (6.37)

Especially if vDS is very close to zero, a sufficient approximation is

RDS ≈ V 2
P

2IDSS (vGS − VP )
. (6.38)

Furthermore, as a special case when vGS = 0,

RDS = RDS0 ≈
−VP

2IDSS

. (6.39)

The reciprocal value of resistance RDS0 is seen in Figure 6.43 as the slope of

the tangential line drawn beside the VGS = 0 curve at small values of VDS. The

tangential line extends to the point (VDS = −VP/2, ID = IDSS), which can be

used to define the value of RDS0.

The equation for RDS can also be obtained analytically by deriving an expression

for transconductance gm, a familiar small-signal transistor parameter, which in

the context of JFETs is defined as

gm =
∂iD
∂vGS

∣
∣
∣
∣
∣
vDS=VDSQ

.

In the saturation region, the drain current of a JFET has been experimentally

found to depend on vGS and VP as

iD = IDSS

(

1− vGS

VP

)2

. (6.40)

The exponent of 2 is rounded from an experimental value to a nice integer,

thereby being an experimental approximation and not an exact theoretical law

[67, p. 260]. After differentiating the expression of iD with respect to vGS, the

expression for transconductance is

gm =
−2IDSS

VP

(

1− VGSQ

VP

)

, (6.41)

where VGSQ is the DC gate-to-source voltage at the chosen static bias point of the

JFET.

Another experimental fact is that the transconductance gm at zero gate voltage

in the saturation region is approximately equal to the channel conductance gds
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between drain and source in the ohmic region when VGSQ = 0 and VDSQ is close

to zero volts [67, p. 260]. Mathematically this fact states that

gm(VGSQ = 0) = gm0 = gds0 =
1

RDS0

=
−2IDSS

VP

.

Hence,

RDS0 =
−VP

2IDSS

.

This is the common way to analyse the JFET drain resistance, but not the only

way since the equation for the drain current iD changes for different doping den-

sity distributions of the JFET substrate. The model of equation (6.40) represents

one limit where the doping density is approximated with an exponential function

[77, p. 21]. The other limit is obtained when the doping density is assumed to

be uniform, and this case has been theoretically analysed by Shockley [78]. The

derivations [77, pp. 13–17] following from the uniform doping distribution lead

to an equation

iD = IDSS

[

1− 3

(
VGS

VP

)

+ 2

(
VGS

VP

) 3
2

]

(6.42)

for the drain current in the saturation region. Applying the definition of the

transconductance to equation (6.42),

gm =
−3IDSS

VP

[

1−
(
VGSQ

VP

) 1
2

]

. (6.43)

To reach a similar equation as (6.38), which would be slightly wrong reasoning in

this case, the equation for the drain-to-source resistance at very small vDS would

read

RDS ≈ −VP

3IDSS

[

1−
(
VGSQ

VP

) 1
2

] . (6.44)

A similar result has been derived by Millman [19, p. 390 and p. 414], also using

Shockley’s analysis as a basis.

When the JFET is biased with the drain and source at approximately the same

potential (i.e. VDS ≈ 0), the current versus voltage characteristics of the JFET

at some specific VGS behave linearly. Therefore, the JFET looks just like a nor-

mal resistor from the signal’s point of view. In practise this means that small

sinusoidal oscillation of the drain current iD about the origin creates a similar

sinusoidal voltage vDS across the JFET. If the oscillations are not small, or if the

DC component of vDS is significant, the sinusoidal form of the signal would be
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distorted because the resistance of the JFET would not behave linearly anymore

for these largely offset signals.

The value of the JFET resistance can be controlled by changing the voltage on

the gate of the JFET. If a reference resistance RDSR in the drain-source channel

is known for some specific gate-to-source voltage VGSR, all other values of RDS

with some VGS can be approximated with

RDS =
VGSR − VP

VGS − VP

RDSR. (6.45)

This is derived simply by dividing equation (6.38) with itself.

When talking about a real JFET component bought from an electronics store, the

simplest setup to find out RDS0 is the case when VGS0 is set to zero and VDS ≈ 0.

Then one can directly use equation (6.39), where RDS0 depends only on pinch-

off voltage VP and the zero-gate voltage drain current IDSS. Unfortunately one

cannot benefit much from the values given in manufacturers’ datasheets for IDSS

and VP , because there is too much variation in the specifications. If the JFET is

to be used as a resistor with a specified range of resistance, the values for IDSS

and VP should be determined by measurements. Even approximately measured

values lead to a much more accurate value of RDS0 than directly using the values

given in the datasheet.

Luckily, the most basic measurement procedures for IDSS and VP are relatively

simple, so it is worthwhile trying it out – especially when building hand-made

vintage effects. The measurement setup to obtain an approximate value of IDSS

is described in Figure 6.44a and the setup for VP measurement is depicted in

Figure 6.44b.

Both measurements are done by biasing the JFET into the saturation region by

choosing the battery to be a few volts over the expected absolute value of VP

and then measuring the voltage drop between points a and b. In the IDSS mea-

surement one should use a very low-valued resistor and then convert the voltage

drop over a to b into current using Ohm’s law. Another way is to simply connect

an ammeter between the drain pin and the battery. To determine the pinch-off

voltage VP , a resistance of about 1 MΩ is placed between the source pin and the

ground. This will self-bias the JFET, and because the current flowing through the

JFET channel will be very small due to the high resistance of the chosen RS, the

potential difference between points a and b will be close to the actual pinch-off

voltage. In true pinch-off the current in the JFET channel is diminishingly small.
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Figure 6.44: Measurement setups to determine the necessary JFET parameters

Therefore, the higher resistance used as RS in the measurement of VP , the closer

one will get to the actual value.

The measurement probes of the measurement device should also have as high

a resistance as possible. At least oscilloscopes have a 10 MΩ probe impedance,

which is quite sufficient already. The difference to using a 1 MΩ probe is clearly

noticeable and in some cases a 1 MΩ probe can give misleading results when

measuring JFETs. In reality, the measured value for the pinch-off voltage will

always be slightly smaller (typically a few hundred millivolts smaller) than the

absolute value of true VP .

In some applications it is required to use JFETs with identical values of IDSS and

VP . The methods described above are suitable for finding similar JFETs, but to

get more accurately matched JFETs, it is better to measure the IDSS with a few

different operating voltages (VGG) and pick the best matches from a group of

measurements. To match VP it would also be good to measure VGS with sev-

eral different resistors to get a set of values, and compare these several values

between different JFETs.

Although the JFET channel current iDS behaves linearly as a function of vDS, cre-

ating a constant resistance RDS when vDS deviates only a little from zero value,

the channel resistance as a function of VGS is completely nonlinear as can be seen

from Figure 6.45. Both equations (6.38) and (6.44) have been plotted into Figure

6.45 to see the actual difference of the two limiting cases. The actual resistance

curve of some practical JFET device is most likely somewhere in between these

two curves. The only difference between the two equations is one square root
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Figure 6.45: JFET resistance as a function of VGS when VDS ≈ 0

term and a constant multiplier of 2 in one and 3 in the other. Generally these dif-

ferences are not that distinct because the behaviour of the curves is roughly the

same. The function with the square root term has been derived from the JFET

channel geometry, and therefore represents a more theoretical way of obtaining

the equation for the resistance curve.

As a general conclusion from Figure 6.45, for a wide range of VGS values the

channel resistance RDS is quite small and changes very slowly. When approach-

ing the pinch-off voltage (VP = −1.8 V in this case), the resistance suddenly

starts changing more and more rapidly and finally ends at the theoretically in-

finite resistance at VGS = VP . Therefore, it is a bit difficult to use the JFET

resistance effectively to implement an accurately controlled change of resistance

for practical applications. A common way to use the JFET as a voltage-controlled

resistance is to connect the JFET parallel to some reference resistance, as has

been done here in the tremolo circuit.

6.3.4 Side effect: the RC phase-shift oscillator

If an amplifier circuit has positive feedback, it is quite certain that it will start

oscillating. Nevertheless, it is not that easy to generate steady and controlled

oscillations with simple circuits. For low-frequency oscillations, it is irrational to

use LC (inductor - capacitor) based circuits because large-valued inductors are
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hard to find, large in size and also expensive. That is why most of the audio

applications use mainly RC (resistor - capacitor) based oscillators or replace the

inductors with operational amplifiers.

One of the simplest low-frequency oscillator circuits is the so-called "RC phase-

shift oscillator" [15, p. 661]. The basic construction of a phase-shift oscillator

uses a network of three or more resistor-capacitor pairs and an amplifier element,

such as a BJT, a FET or an operational amplifier [79] [80]. The version of the

oscillator that is used in this tremolo effect circuit is drawn independently in

Figure 6.46 to support a more in-depth analysis.

RC

C1

R1

C2

R2

C3

RB

VCC

Figure 6.46: A BJT RC phase-shift oscillator circuit

The idea of the circuit is to get a phase shift of 180 degrees from the transistor

output, and feed the signal back to the input of the transistor with an additional

180 degree phase shift from the RC network – a full 360 degree shift in total.

The feedback to the amplifier is definitely positive since the signal always comes

back to the input having the same phase as it started. The oscillations are started

with any sudden impulse, such as switching on the power to the circuit. Another

important condition for oscillations is that the amplifier must have a gain at least

equal to the attenuation of the RC network.

In common literature, there are examples of the analysis of the RC network with-

out the amplifier, and if the amplifier is included, it is mostly assumed to be ideal

with large input impedance and small output impedance. In this specific oscil-

lator used in the tremolo circuit, the transistor’s internal resistance rπ plays a

considerable role because it is part of the RC network. What complicates the

analysis even more is the fact that the amplifier cannot be assumed to be ideal in

this case because the RC network is affecting the gain of the transistor configura-
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tion. It will be beneficial to analyse the ideal case first and then add in the things

breaking the ideal model to see the differences.

This version of the BJT phase-shift oscillator uses an elegant biasing arrange-

ment, where the base bias current is taken from the collector of the transistor.

The bias network is drawn in Figure 6.47. The feedback loop from collector to

VC

RB

RC

VCC

IC

IB

IC + IB = IE

Figure 6.47: DC bias network of the BJT phase-shift oscillator

base helps to stabilise the bias point and therefore is an alternative choice to

using an emitter resistor for bias stabilisation. The reason for using collector-to-

base biasing is to try to maximise the gain and avoid having a bypass capacitor,

which would be needed in the emitter resistor biasing scheme. When design-

ing low-frequency oscillators it is beneficial to try to avoid the use of any bypass

capacitors, because unless they have very large capacitance values, they have a

significant effect to the oscillator behaviour.

It is possible to develop a relatively simple design model for biasing VC to half

way point of the operating voltage VCC . From Figure 6.47 one has

VCC = 0 + VBE + IBRB + IERC = IE

(

RC +
RB

βF + 1

)

+ VBE (6.46)

and from here the quiescent emitter current is

IEQ = IE =
VCC − VBE

RC +
RB

βF + 1

. (6.47)

Let’s assume that one wants to use a transistor with a certain βF and collector

resistor RC . Then, from (6.46) and from (6.46) with VCC/2 one has

RB = RC(βF + 1)

[
2(VCC − VBE)

VCC

− 1

]

. (6.48)
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Substitution of this base resistance value RB into equation (6.47) gives the quies-

cent emitter current and then

VC = VCC − IEQRC =
VCC

2
. (6.49)

Theoretically this procedure yields the value of RB, which biases the collector

voltage to the optimal operating point when RC and βF are known.

As for the AC analysis, the small-signal equivalent circuit for the phase-shift os-

cillator of Figure 6.46 is depicted in Figure 6.48. The small-signal model can be

1

rπ

gmvπ

2

RC

3
C1

R1

4
C2

R2

C3

RB

+

−

vπ

Figure 6.48: The small-signal equivalent of the RC phase-shift oscillator

described as a matrix representation of the form Y × V = I, where Y refers to

the admittance matrix, V to the node voltage vector and I to the current source

vector. In explicit terms, the matrix equation is


















1

rπ
+

1

RB

+ sC3 − 1

RB

0 −sC3

− 1

RB

1

RC

+
1

RB

+ sC1 −sC1 0

0 −sC1
1

R1
+ sC1 + sC2 −sC2

−sC3 0 −sC2
1

R2
+ sC2 + sC3


















×
















V1

V2

V3

V4
















=
















0

−gmV1

0

0
















,

where by inspection from Figure 6.48, vπ = V1 in the current source vector.

Starting with the analysis of the small-signal model of Figure 6.48, it is reason-

able to assume that the voltage at node 2 has a 180 degree phase shift in relation

to the input. This assumption is valid in the case of an ideal amplifier, where the
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RC network is not seen as a load that affects the amplification. To determine the

additional phase shift of the RC network, one needs to solve the voltage for nodes

2 and 1. Using the general nodal analysis method to start solving the voltage at

node 1, one can write

V1 · det(Y )

gmV1
= det(V1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− 1

RB

0 −sC3

−sC1
1

R1
+ sC1 + sC2 −sC2

0 −sC2
1

R2
+ sC2 + sC3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(6.50)

and similarly for the voltage at node 2,

V2 · det(Y )

−gmV1
= det(V2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

rπ
+

1

RB

+ sC3 0 −sC3

0
1

R1
+ sC1 + sC2 −sC2

−sC3 −sC2
1

R2
+ sC2 + sC3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (6.51)

To reach an explicit form of a transfer function, the determinants on the right

sides of equations (6.50) and (6.51) should be written open and then form the

expression for
V1

V2

. The ratio of these two voltages gives the attenuation factor

γ for the RC network. When the imaginary part of this expression is zero, an

equality of −V1 = γV2 should hold.

After working out the determinant calculations from equations (6.50) and (6.51)

and making the substitution s = jω that holds for sinusoidal oscillations, one has

the relation
V1

V2

=
a+ jb

c+ jd
, (6.52)

where

a = 1−R1R2(C1C2 + C1C3 + C2C3)ω
2

b = R1(C1 + C2)ω +R2(C2 + C3)ω −RBR1R2C1C2C3ω
3

c =

(

1 +
RB

rπ

)
[
1−R1R2(C1C2 + C1C3 + C2C3)ω

2
]
−

RBR1(C1C3 + C2C3)ω
2 −RBR2C2C3ω

2
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d =

(

1 +
RB

rπ

)

[R1(C1 + C2)ω +R2(C2 + C3)ω] +

RBC3ω −RBR1R2C1C2C3ω
3

The next step is to set the imaginary part of equation (6.52) to zero. This needs

further elaborate calculations because the equation (6.52) has to be multiplied

with its complex conjugate in order to get the imaginary coefficient separated

from the real part. The complex conjugate expansion yields

V1

V2

=
(a+ jb)

(c+ jd)

(c− jd)

(c− jd)
=

(a+ jb)(c− jd)

c2 − d2
, (6.53)

and now the imaginary part can be separated from the equation. To meet the

requirement of a 180 degree phase shift, the imaginary part has to equal zero,

i.e.

− j(ad) + j(bc) = 0. (6.54)

After performing the multiplications, one ends up with a biquadratic equation

Aω4 − Bω2 − 1 = 0 (6.55)

where

A = R1R2C1C2

[
RB

rπ
R1R2(C1C2 + C1C3 + C2C3)

+RBR1(C1C3 + C2C3) +RBR2C2C3

]

B = R1R1(C1C1 + 2C1C2 + C2C2) + 2R1R2C2C2

+R2R2(C2C2 + C2C3) +

(

1 +
RB

rπ

)

R1R2C1C2

It is possible to derive a solution formula for equation (6.55) by making the sub-

stitution x = ω2. Proceeding from here,

Ax2 −Bx− 1 = 0
∣
∣ · 4A

4A2x2 − 4ABx = 4A
∣
∣+B2

(2Ax)2 − 4ABx+ B2 = B2 + 4A

(2Ax− B)2 = B2 + 4A

x =
B +

√
B2 + 4A

2A
.

This equation looks familiar. It is almost the same as the quadratic formula. It

was better to write it all here because the result needs clarification. Basically the
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answer should have the term B ±
√
B2 + 4A but because no resistor or capacitor

value is negative, the square root term is always larger by value than B. If the

minus sign is taken along, then one would allow negative frequencies as the

answer, and that is absurd.

Having clarified this point, it can be concluded that from the four possible so-

lutions to equation (6.55), only one of them is always physically meaningful for

this specific case. Returning the substitution between x and ω2, the solution has

the form

ω =

√

B +
√
B2 + 4A

2A

and since ω = 2πf , a true frequency value is obtained from equation

fosc =

√

B +
√
B2 + 4A

8π2A
. (6.56)

Now that the expression for the oscillating frequency of the RC phase-shift oscil-

lator has been found, the value of ω should be substituted back to equation (6.52)

to find out the attenuation caused by the impedances in the RC network in the

specific oscillating frequency. This back substitution also verifies that there have

not been any mistakes in the previous calculations. The result from equation

(6.52) should be negative and real-valued (although the possible imaginary part

in numerical calculations can be diminishingly small).

So how accurately does equation (6.56) predict the actual frequency of oscillation

for the circuit in Figure 6.46? Unfortunately not very accurately. Firstly, in the

derivation of the equation the amplifier element was assumed to be ideal, and

secondly, the transistor’s obscure internal resistance rπ makes the results even

more undeterministic. The circuit that fits exactly to the equations derived so

far for oscillation frequency is depicted in Figure 6.49. Here the transistor’s

controlled current source gmvπ is replaced by a constant current source IC .

In a general case, a theoretical condition for sinusoidal oscillations requires that

the real part of a feedback amplifier return ratio T (jω) should equal to −1 and

the imaginary part of T (jω) should equal zero. This condition is called the

Barkhausen Criterion [15, p. 660]. Practical oscillators can, and should have,

a loop gain that is greater than one since the oscillation amplitude is limited by

nonlinear effects. When using a gain which makes the return ratio very close

to unity in the phase-shift oscillator, the oscillating signal is an extremely clean

sine wave. If the gain is increased to make return ratio grow above unity, the
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IC

2

RC

3
C1

R1

4
C2

R2

1
C3

rπ

RB

Figure 6.49: The RC phase-shift network without a transistor

sine wave becomes more and more distorted, and it is eventually clipped at the

operating voltage limits. However, even if clipping occurs, the RC network filters

the signal so that it can still be recognised as a sine wave, but not a very clean

one.

Concerning the ongoing phase-shift oscillator analysis, the return ratio of the

circuit is, by definition, evaluated as

T = −V1

V̂1

= −V1

V1

, (6.57)

where the notation V̂1 is used for differentiating the input and output signals at

voltage node V1. The return ratio can be taken as a regular transfer function,

where V̂1 is the input signal and V1 is the output signal. Therefore, the correct

way to evaluate the oscillation frequency of the circuit is to solve the output

voltage V1 from the 4x4 matrix equation using Cramer’s rule and divide it by the

term gmV1, which holds the input voltage V̂1 coming to node V1:

V1 = gmV1
det(V1)

det(Y )
. (6.58)

The calculation is procedure is similar to the one already shown. As a result the

transfer function is again of the form:

V1

gmV1

= −R2
xD

RB

a+ jb

c+ jd
, (6.59)

where

a = 1−R1R2(C1C2 + C1C3 + C2C3)ω
2

b = R1(C1 + C2)ω +R2(C2 + C3)ω −RBR1R2C1C2C3ω
3
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c = 1−C1C2[R1R2+(R1+R2)RxA]ω
2−C1C3(R1R2+R1RxB+R2RxA+R2

xD)ω
2−

C2C3[R1R2 + (R1 +R2)RxB]ω
2

d = [C1(R1 +RxA) + C2(R1 +R2) + C3(R2 +RxB)]ω−
C1C2C3[(R1 +R2)R

2
xD +R1R2RxC ]ω

3.

To shorten the equations, the following resistance combinations have been used:

RxA =
RC(rπ +RB)

RC + rπ +RB

;RxB =
rπ(RC +RB)

RC + rπ +RB

;RxC =
RB(rπ +RC)

RC + rπ +RB

;R2
xD =

RCRBrπ
RC + rπ +RB

.

Without further elaborate derivations, the transfer function (6.59) can be used to

find out the frequency of oscillation. The exact theoretical oscillation frequency

can be evaluated with the help of the general quadratic formula, and the resulting

equation is

fosc =

√

−B +
√
B2 − 4AC

8π2A
, (6.60)

where

A = RBR1R2C1C2C3

[

(C1C2 + C1C3 + C2C3)

{

R1R2

(

1− RxC

RB

)

− (R1 +R2)
R2

xD

RB

}

+

C2 (C1RxA + C3RxB) (R1 +R2) + C1C3

(
R1RxB +R2RxA +R2

xD

)
]

B = [(RxC −RB)R1R2 − (R1 +R2)(R1RxB +R2RxA)]C1C2C3−
C2(C1RxA + C3RxB) [C2(R1 +R2)(R1 +R2) + (R1C1R1 +R2C3R2)]−

R2(R2RxA +R2
xD)C1C3C3 −R1(R1RxB +R2

xD)C1C1C3

C = −(RxAC1 +RxBC3).

It would also be nice to be able to directly calculate the value for βF that could

be taken as a lower limit for producing a sufficient voltage gain for oscillation.

An analytic expression for this purpose can be derived from equation (6.50), from

where the unity gain relation

V1

V1

=
βF

rπ

det(V1)

det(Y )

can be solved. Setting an equality
V1

V1

= 1 requires that the voltage arriving to

node 1 equals the voltage that left that node. This leads to the useful equation

βF ≥ det(Y )

det(V1)
rπ (6.61)

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



364 EFFECT DEVICES

for the current gain factor. Equation (6.61) gives a theoretical minimum value

for βF to get the oscillator running for a certain component configuration. In

another words, this value of βF obtained from equation (6.61) gives theoretically

a voltage gain of 1 when going around the circle in Figure 6.48 from node 1 back

to node 1. In terms of the transfer function (6.59) the same minimum current

gain factor is evaluated as

βF ≥ −RBrπ
R2

xD

c

a
. (6.62)

Notice how only the terms a and c are included to the equation from the trans-

fer function. This is because one can assume that at oscillation frequency the

imaginary part of the transfer function vanishes completely.

In order to calculate the voltage gain of the transistor between nodes 1 and 2 of

Figure 6.48, equation (6.51) gives the voltage relation

V2

V1

=
−βF

rπ

det(V2)

det(Y )
, (6.63)

which can be used to estimate the voltage gain of the transistor with arbitrary

component values in this specific configuration. Because of the impedance of the

RC network, the phase shift in the amplifier element from node 1 to node 2 is not

exactly 180 degrees at any frequency of oscillation. It is as if the amplifier would

cause a phase ’drift’ that lowers the frequency. The general effect of an unideal

amplifier is that the gain is smaller and the oscillation frequency is typically lower

in comparison to the ideal case already derived to give equation (6.56).

Typically design equations for tuning the oscillator to a certain frequency are

given with the assumption that all capacitors and all resistors have the same

value. This choice leads to a very simple equation to determine the oscillation

frequency from. It is undoubtedly beneficial to select the capacitors to have

the same value, because in addition to simplicity, the needed current gain is

optimised by choosing equal capacitor values. To make the oscillator tunable by

a potentiometer requires the design equations as derived above, because with

these equations all the necessary parameters can be evaluated mathematically.

An example Octave script for design aid is given in Appendix C.

The oscillation frequency in the tremolo circuit can be controlled by taking R1 as

a potentiometer. This is a nice idea, but there is one disadvantage when using

the phase-shift oscillator as a potentiometer-controlled source of vibration. The

voltage gain needed to keep the oscillator running varies with the values of R

and C, which are used for tuning the phase-shift network to a certain frequency.
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The voltage gain should compensate the attenuation caused by the RC network at

the frequency of oscillation. Figure 6.50 shows the need for changing the voltage

gain with different values of bias resistor RB when the resistor R1 is varied from

1 kΩ to 100 kΩ.
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RB=1.0 MΩ

RB=1.5 MΩ

RB=2.0 MΩ

RB=2.5 MΩ

Figure 6.50: Voltage gain needed for oscillations

As R1 is a potentiometer, the changes in its value reflect to the frequency of

oscillation nonlinearly, as shown by the solid line in Figure 6.51. When the resis-

tance range of R1 is drawn using a logarithmic axis, the frequency dependency

becomes linear. This linearised dependency is represented by a dashed line in

Figure 6.51. If a linear potentiometer was to be used as R1, it would be difficult

to set the higher frequencies accurately because a very small change in the re-

sistance of R1 would cause a relatively large change in frequency. It is therefore

clear that a logarithmic potentiometer should be chosen as R1.

The transistor for the phase-shift oscillator needs to be chosen so that it has a

large enough βF to produce the required voltage gain. If the transistor is set up

to give the maximum gain needed at the upper and lower limits of resistance

R1, the middle values of R1 will lead to a distorted sine wave output. This hap-

pens because the phase-shift oscillator gives a nice and clean sine wave if and

only if the voltage gain provided by the transistor is only slightly larger than the

attenuation of the RC network. Using a potentiometer to vary the frequency of

oscillation forces to allow a distorted sine wave output at some range of frequen-
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Figure 6.51: The oscillation frequency as a function of R1

cies. At the limits of R1, the peak-to-peak amplitude of the generated sine wave

might be lower than in the middle section due to the different gain requirements.

The different gain factors (voltage gain, required current gain and attenuation of

the RC network that indicates the minimum required voltage gain) are visualised

in Figure 6.52. The gain curves have been calculated using the actual tremolo

circuit component values and a fixed value of 160 for the current gain factor βF .

Figure 6.52 indicates that the oscillations will occur through the whole range

of R1 values. In the location where the gap between the actual gain and the

required gain is at its largest, the output signal of the oscillator will be a slightly

distorted sine wave. If the curve of the required gain goes higher than the actual

gain at some value of R1, then oscillations would fade out nearby that area.

It needs to be emphasised that the previous analysis was made from a purely

theoretical point of view and it used a few simplifications in the transistor model.

The situation is a little bit different when building the oscillator circuit in practise,

and it might turn out that the theoretical value for the unity gain βF is not enough

to make the circuit oscillate. This configuration is especially difficult because the

oscillation frequency and also the voltage gain depend on the transistor’s internal

resistance rπ, the value of which depends on the DC biasing conditions and is

difficult to determine accurately by theoretical means.
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Figure 6.52: Gain curves for RC phase-shift oscillator design

6.3.5 A SPICE model for the tremolo circuit

The tremolo schematic was redrawn using gschem to be able to directly generate

the netlist file for ngspice simulations. The schematic includes all the compo-

nents assigned with their actual values. The potentiometers in the circuit are

split into two separate resistors to be able to simulate the voltage divider func-

tionality by changing simultaneously the values of the two resistors. As a slight

difference to the schematic 6.40, there is one additional 2.2 MΩ resistor R1 at the

input of the circuit, and R14 has been added in series with potentiometer R15 to

add a base resistance to compensate the situation where the potentiometer R15

is short-circuited. The transistors used in this model are 2N5088 for both bipolar

transistors and 2N5457 for the JFET.

When using the gEDA design tools collection in Linux, the netlist for the SPICE

simulations is created from the schematic of Figure 6.53 using the command

gnetlist -g spice-sdb -o tremolo_net.net tremolo.sch

where the output file named as tremolo_net.net is created from the schematic

file tremolo.sch. The created netlist is printed here for convenience to show the

model parameters used for the 2N5088 (.model NPN1) bipolar junction transis-

tor and the 2N5457 (.model NFET1), although these SPICE models are readily

available in the datasheets provided by the manufacturers, which can easily be
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Figure 6.53: The tremolo schematic drawn with gschem

found from the Internet.

*============== Begin SPICE netlist of main design ============

J2 9 10 0 NFET1

.MODEL NFET1 NJF (VTO=-1.8 BETA=0.00135 LAMBDA=0.001 RD=35 RS=31.5

+ CGS=2.25E-12 CGD=6E-12 KF=6.5E-17 AF=0.5)

V2 0 2 DC 0 AC 1 SIN(0 0.01 55)

V1 1 0 DC 9V

R102 0 10 125k

R9 12 19 12k

C3 19 0 1uF

R71 7 6 5k

R15 0 16 10k

C7 15 14 1uF

R12 13 12 2200k

R101 10 18 125k

Q3 12 13 0 NPN1

Q1 4 3 5 NPN1

.MODEL NPN1 NPN (Is=5.911f Xti=3 Eg=1.11 Vaf=62.37 Bf=1.122K Ne=1.394 Ise=5.911f Ikf=14.92m

+ Xtb=1.5 Br=1.271 Nc=2 Isc=0 Ikr=0 Rc=1.61 Cjc=4.017p Mjc=.3174 Vjc=.75

+ Fc=.5 Cje=4.973p Mje=.4146 Vje=.75 Tr=4.673n Tf=821.7p Itf=.35 Vtf=4 Xtf=7 Rb=10)

C5 8 9 22uF

C2 4 6 1uF

C8 15 13 1uF

C4 11 12 0.47uF

C6 12 14 1uF

C1 2 3 0.22uF

R14 16 14 1k

R13 0 15 15k

R11 18 11 120k

R72 0 7 5k

R8 1 19 3k

R1 0 2 2200k

R6 0 8 1.2k

R5 8 5 180

R4 4 1 15k

R3 0 3 82k

R2 3 1 560k

.end
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With this tremolo circuit configuration, one is mainly interested in the transient

simulation since the frequency response is already handled by the manual ap-

proximate form of analysis in section 6.3.2.

To perform the transient simulations for the tremolo circuit, adequate control

commands are added to the beginning of the netlist file. In this specific case it

was noticed that the RC phase-shift oscillator needed about 20 seconds of simu-

lation time to properly get up and running, so therefore the simulation is done

in the interval from 19 to 20 seconds. The simulation is run twice with different

settings of the potentiometer R10 that controls the modulation depth. The op-

erating point analysis is also added to see how the transistors are biased in the

static DC configuration. The simulation control commands are now set as

.control

tran 100us 20s 19s

alter R101 1k

alter R102 250k

tran 100us 20s 19s

gnuplot tre_tran tran1.v(7) tran1.v(10) tran2.v(7) tran2.v(10)

.endc

.OP

and the results are requested to be saved to a gnuplot formatted data file. Even-

tually, the simulation is run using the command

ngspice -b tremolo_net.net

which prints the operating point information to the computer screen and creates

the data file tre_tran.data to be plotted later with gnuplot.

6.3.6 Results of simulations, calculations and measurements

The actual prototype of the simulated tremolo circuit 6.53 was built on a medium

size solderless breadboard. It was not easy to find the 2N5088 and 2N5457

components from the local dealers, so replacements had to be found for these

transistors. A bipolar junction transistor BC549C was used instead of 2N5088,

and 2N3904 was also experimented in the phase-shift oscillator circuit. The

BF245B and BF245A field-effect transistors were examined as replacements for

the 2N5457. The BF245B does not seem to be a direct replacement for 2N5457

since the measured values for IDSS and VP of BF245B were 11 mA and −3.6 V

respectively. The simulation model of 2N5457 had VP = −1.8 V, and it matches

much better with the BF245A, which was measured to have a pinch-off voltage

of −1.7 V. The parameter measurements of BF245B and BF245A were made as
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described in Figures 6.44a and 6.44b.

Despite the replacement parts used in the prototype, the simulations were run

using the SPICE models for 2N5088 and 2N5457 because these models were

easily obtained from the manufacturer’s datasheet. One can also argue on the

validity of these models since many of the JFET’s parameters cannot be exactly

defined. For example, even if the model gives VP = −1.8 V for the 2N5457, the

real component might have VP = −0.8 V due to large variations in the value of

the pinch-off voltage. So again, it is better to just throw in some approximate

values and see what happens. Luckily the tremolo circuit is not that sensitive to

a certain JFET parameter. The functionality of the effect depends only on the

pinch-off voltage VP .

The results of the DC biasing calculations of the tremolo circuit are gathered into

Table 6.2 along with the simulated and measured values. The quiescent values

of transistor Q1 are referenced by using a subscript 1, and the quiescent values

of transistor Q3 used in the oscillator stage are referenced with a subscript O (as

Oscillator). The voltage node 8 refers to the indexed wiring junctions marked in

the gschem schematic 6.53.

Table 6.2: Tremolo circuit quiescent voltages

value simulated calculated measured

VB1 1.11 1.10 1.03

VC1 3.93 3.55 3.32

VE1 0.47 0.50 0.51

V8 0.40 0.43 0.44

VBO 0.64 0.60 0.58

VCO 2.34 2.36 2.56

A VBE of 0.6 volts was assumed in the numerical calculations. The current gain

factor βF was 550 as indicated as an average value for the BC549C transistor,

which was chosen to be used in the prototype build. The collector voltage VCO

of the oscillator transistor depends largely on the current gain factor βF , so if

different transistors are used, the value of VCO will change. Generally the results

for the bias voltages are in agreement, although the operating point analysis in

the simulations was done with the SPICE model of the 2N5088 transistor, which

has a βF of over a 1000.
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The transfer characteristics of the tremolo circuit have already been demon-

strated in Figure 6.42. The frequency response passes all relevant audio fre-

quency components nicely and the change in the gain does not alter the fre-

quency characteristics. The value of the input capacitor C1 can be increased if

very low frequencies are involved.

A transient analysis from the simulated tremolo circuit produces the waveform

shown in Figure 6.54. When simulating the transient behaviour, the input sig-

nal was set to a sine wave with a 55 Hz frequency (the open A-string of a bass

guitar) and the amplitude to 0.01 volts. This frequency was chosen because of

the visualisational benefits of showing the signal clearly under the modulation

envelope. The bottom part of Figure 6.54 shows that the 55 Hz sine is inside

the modulating envelope, which is generated by ’multiplying’ the original input

signal with the low-frequency oscillator signal.
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Figure 6.54: A transient simulation of the tremolo circuit

The top part of Figure 6.54 also presents the voltage at the gate pin of J2. The

voltage from the phase-shift oscillator has a peak-to-peak voltage of approxi-

mately 8 volts, and after capacitor C4 this voltage swings ±4 volts around zero

volts. The potentiometer R10 is used to scale the oscillator output voltage to the

gate of J2. Because the waveform of the gate voltage is so far from a clean sine

wave, in this case the gain of the oscillator transistor is too high with respect to

the Barkhausen criterion.
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When the oscillator voltage is negative, it reverse biases JFET J2 with a negative

vGS. When the voltage of the JFET gate goes down close to the pinch-off voltage,

the parallel resistance of J2 and R6 grows to the maximum, which equals the

value of R6 alone. The maximum resistance reduces the small-signal gain of Q1

on the input signal. The oscillating resistance on the emitter of Q1 produce the

roller-coaster form of output from this tremolo circuit. It is interesting to see

that the envelope has the sinusoidal form, although the resistance of the JFET

changes so nonlinearly with the changing vGS. Apparently the parallel resistor

R6 has been chosen very carefully to linearise the JFET resistance changes.

The depth of the modulation can be controlled by potentiometer R10. The max-

imum modulation depth is obtained by adjusting the potentiometer to give a

maximum resistance of 250 kΩ between the JFET gate and ground. At the max-

imum modulation depth, the peak-to-peak voltage of the phase-shift oscillator

at the gate of J2 is not attenuated at all by R10. This change in the modulation

depth is visualised in Figure 6.55. It is clearly seen that when VGS hits the pinch-
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Figure 6.55: Maximum modulation depth

off voltage and beyond, the emitter resistance is effectively equal to the constant

value of R6 because the resistance of the JFET is so much larger than R6. The

modulated output signal envelope in this case looks more like a result of a square

wave modulation than the actual sinusoidal modulation.

One can also observe from the simulations that the gain changes with a factor of
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2 as the JFET changes state from closed to open. The factor of 2 in a voltage gain

means a 6 dB change in decibels. This correlates relatively nicely with the gain

curves presented in Figure 6.42. This describes the relevant parts in the transient

behaviour of the tremolo effect in a nutshell.

The prototype build of the tremolo effect circuit was first tested with a complete

setup of a guitar and an amplifier to verify that the circuit actually sounds as

intended. Luckily it did, after correcting some minor wiring errors on the plug-

board. As usual, nothing ever works straight away on the first trial. The best

sounding effect was achieved when the oscillator was giving a modulation signal

of about 3 - 5 Hz. This aurally tuned potentiometer setting was chosen to be used

also for the official measurements.

To be able to compare with the simulation results, a 55 Hz sine wave was played

through a computer sound card as an official test signal for the prototype mea-

surements. Just as in the case of the simulations, the frequency of 55 Hz was

chosen for the test signal because the signal inside the modulation envelope was

adequately visible with this frequency. The output of the sound card was directly

connected to the input terminals of the prototype tremolo circuit with a regular

guitar cable. The output terminals of the tremolo circuit were not connected to

an amplifier during the measurements, but instead a digital storage oscilloscope

was used to trace down the waveforms in the tremolo circuit.

Figure 6.56 shows the measured input and output waveforms from the prototype

circuit using the BF245B JFET. The potentiometer R10 was set to the full 250 kΩ

value to make the amplitude modulation work sufficiently. The measured output

waveform is similar with the simulated amplitude modulated waveform of Figure

6.54.

As a general comment with reference to Figures 6.54 and 6.56, the amplitude

gain of the prototype circuit is about 10, which correlates with the simulations.

The measurement of the output signal was done over a fixed 10 kΩ resistor,

whereas the simulation output signal was recorded with the output potentiome-

ter in the halfway range, i.e. 5 kΩ. This difference attenuates the simulation re-

sults by a factor of 2, which makes the results between the simulations and mea-

surements similar. The voltage gain of the circuit was higher than expected, so

most likely a transistor with a smaller βF would be better to replace the BC550C

as Q1. The signal fed from the computer sound card was set to an unnecessary

high level, therefore it was not perfectly simulating the signal coming from the

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



374 EFFECT DEVICES

−50

−25

0

25

50

−500
−250

0
250
500

0 100 200 300 400 500 600 700 800 900

vo
lt

ag
e

[m
V

]

time [ms]

Vin

Vout

Figure 6.56: The measured input and output voltages of the tremolo effect

electric guitar output jack.

Figure 6.57 shows how the sine wave generated by the phase-shift oscillator re-

lates to the output signal of the tremolo circuit. The amplification does indeed

change at the rate set by the oscillator. Moreover, what is essential to note in Fig-
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Figure 6.57: Oscillator output versus tremolo output
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ure 6.57 is the voltage range of the oscillator’s sine wave. When using transistors

with a high βF , the peak-to-peak voltage of the oscillator is about the same as

VCC . If the gain of the transistor is not very high but still sufficient to keep the

oscillator running, Vp−p might be a few volts under VCC . Therefore, with differ-

ent transistors the changes in the oscillator’s peak-to-peak voltage might lead to

a nonuniform modulation depth within the adjustable frequency range provided

by potentiometer R15.

To compare the effect of specific pinch-off voltages of the used JFETs, the gate

voltage and the tremolo output waveforms were recorded for both BF245B and

BF245A. According to Figures 6.58 and 6.59, a JFET with a pinch-off voltage of

approximately −2 volts works best for this circuit, since the depth can then be

controlled in a more versatile way. Clearly the VP of −3.6 V of BF245B is too high

and does not provide a good adjustability for the modulation depth. The BF245A
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Figure 6.58: JFET BF245B gate voltage versus tremolo output

behaves almost exactly like the 2N5457 in the simulations. Clearly the pinch-off

voltage is lower in BF245A than in BF245B, and therefore leads to better control

on the modulation depth.

The phase-shift oscillator was also measured as a separate circuit, because of the

wide theoretical treatment given in section 6.3.4. Transistors 2N2369, 2N3904

and BC549C having a different βF were tested to find out if the theoretical anal-

ysis could predict the frequency of oscillation and the gain properties correctly.
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Figure 6.59: JFET BF245A gate voltage versus tremolo output

For comparing the measured oscillation frequencies to the analytical values,

equation (6.60) was used for determining the theoretical upper limit for oscil-

lation frequencies within the range of potentiometer R15 set at maximum and

minimum value. The measurements were made for a few selected values of R15

so that normal resistors with fixed resistance values were used instead of a po-

tentiometer. It was already noted that the nonideal amplifier causes the actual

oscillation frequency to be lower than the theoretical frequency of the isolated

RC network. The frequency value provided by equation (6.60) was used for calcu-

lating the theoretical values of minimum βF and gain with respect to the varying

resistance provided by potentiometer R15.

The specific properties of the transistors used were obtained primarily by mea-

surements. The current gain βF was measured using a basic multimeter with

hFE measurement capability. The value of rπ for the analytical calculations was

determined by measuring the voltage at the collector of Q3 and determining the

bias current ICQ with regular Ohm’s law calculations. Then, from here one can

proceed by combining the approximate BJT formulae gmVT ≈ ICQ and gmrπ = βF

as

rπ ≈ βFVT

IC
, (6.64)

where VT is approximately 25 mV at room temperature. The value of ICQ was

determined using the results of the manual bias calculations for the oscillator
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transistor Q3 presented in section 6.3.1. This theoretical result was compared to

the value of ICQ obtained by the measurements. Table 6.3 summarises the results

of the measurements.

Table 6.3: Phase-shift oscillator measurements

2N2369 2N3904 BC549C

value meas. calc. meas. calc. meas. calc.

βF 77 - 232 - 553 -

rπ 12.2 kΩ 10.7 kΩ 23.3 kΩ 18.1 kΩ 34.5 kΩ 33.3 kΩ

AV 65 70 115 114 168 184

f3 kΩ − − 5.20 Hz 5.61 Hz 5.45 Hz 5.31 Hz

f10 kΩ 3.91 Hz 4.51 Hz 3.44 Hz 4.07 Hz 3.56 Hz 3.82 Hz

f15 kΩ 3.43 Hz 3.96 Hz 3.00 Hz 3.60 Hz 3.09 Hz 3.37 Hz

f22 kΩ 3.06 Hz 3.47 Hz 2.66 Hz 3.16 Hz 2.72 Hz 2.97 Hz

f39 kΩ 2.64 Hz 2.80 Hz 2.26 Hz 2.58 Hz 2.25 Hz 2.43 Hz

f47 kΩ − − 2.16 Hz 2.40 Hz 2.10 Hz 2.27 Hz

f68 kΩ − − 1.98 Hz 2.10 Hz 1.86 Hz 2.01 Hz

f82 kΩ − − 1.88 Hz 1.96 Hz 1.78 Hz 1.87 Hz

In Table 6.3, the gain AV has been measured as the ratio of the peak-to-peak

voltages at the base and collector of the transistor. The measurement has been

made at the highest value of R15 because then the needed gain has been close

to the actual gain, and the faulty values due to clipping have been hopefully

avoided. The gain results seem reasonable and are also in good agreement with

the calculated values from equation (6.63).

The calculated values for the frequency of oscillation are still a bit overshoot-

ing but the consistency is good, meaning that there is not a value that would

be completely out of the scope. Therefore, the frequency values predicted by

the calculations are relatively accurate and this means that the method used to

derive the equations can be used for designing similar phase-shift oscillators for

arbitrary frequencies. The gain of transistor 2N2369 was too low for some of the

values of R15 and this was also nicely seen in the calculations, since the minimum

βF given by equation (6.61) went over the actual βF of transistor 2N2369 for all

the missing values.
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6.4 A compressor and an expander

Compression and expansion techniques can be categorised mainly as recording

studio effects, but some compression devices do also exist as effect pedals for

electric guitars. The idea of a compressor is simple: if some notes are played

so strongly that their amplitude exceeds a preset limit, the compressor device

becomes active and attenuates the overly loud note. A compressor can also give

more gain to very low level signals to even out the average amplitude level of

the signal in the long run. The compressor effect simply reshapes the amplitude

envelope of sharp and quickly decaying sounds into a more constant amplitude

envelope. As an example, the amplitude envelope of a plucked guitar string can

be varied in many ways by using the compressor with different settings. Figure

6.60 shows a waveform of a sharp pluck of a single string and the compression

parameters relating to that waveform.
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Figure 6.60: The attack (A) and release (R) times of a sharp pluck

There are four basic parameters that can be controlled on all compressors: thresh-

old level, attack time, release time and compression ratio. Additionally, the com-

pressor device might also include a gain section. When related to compression,

the gain is referenced as make-up gain. Three of the basic compressor parameters

are shown in Figure 6.60. The compression process starts when the amplitude of

the signal goes over the threshold level (TH).

The attack time (A) describes how fast the compressor reacts after the signal
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has exceeded the threshold level and is able to attenuate the amplitude back

towards and below the threshold level. Short attack times make the compressor

react to fast crossings of the threshold level, while longer attack times allow short

impulses to go over the threshold without compression; only longer transcending

signals are acknowledged by the compressor.

The release time (R) refers to the period where the compressor starts to deac-

tivate itself by decreasing the attenuation and finally ending up to an uncom-

pressed state, where the total gain of the system is back to normal. The release

time is typically clearly longer than the attack time.

At the time when the output signal is over the threshold level, the compression

ratio determines the amount of attenuation applied to the input signal. As an

example, a 4:1 compression ratio is reached in a situation where the input signal

is four times higher above the threshold than the output above the threshold. If

the input is 4 dB above threshold, then the output is 1 dB above the threshold

with a 4:1 compression ratio. A bit strange definition, but that is the way it has

been defined.

The make-up gain is a factor that is used to give some extra gain to keep the

average amplitude close to the threshold level when the compressor is not atten-

uating the amplitudes cutting across the threshold. [66, pp. 131 – 134]

One of the first analogue guitar effect pedals that created amplitude compres-

sion is called an ’Orange Squeezer’, originally designed by the analogue effects

guru Dan Armstrong. The naming of the effect pedal follows the same line of his

colourful product names such as the ’Green Ringer’ and ’Red Ranger’. The imple-

mentation of the Orange Squeezer is simple, but nonetheless it is an interesting

and very powerful device. That is why it is good to go through the functional-

ity of the circuit and learn something about compression. The schematic of the

original Squeezer pedal is presented in Figure 6.61 and it is redrawn from the

schematic found from the Tonepad website [81].

The Orange Squeezer circuit works in a feedback mode so that it monitors the

output level and attenuates the input signal when the output voltage exceeds a

certain preset level. Another option to implement a compressor would be to use

a feedforward mode where the level of the input signal is monitored, but the

feedback mode is usually a more robust solution. The gain block of a general

compressor device is often referred to as a voltage-controlled amplifier (VCA).
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Figure 6.61: A circuit diagram of the Orange Squeezer effect pedal (for component

values, see appendix D)

The capacitor C6 acts as the level monitor at the output side and it is charged

through resistor R6. The job of diode D1 is to pass only the positive voltage

pulses to charge C6 and force the discharging process of the capacitor through

R7 instead of the combination of R6 and R7. This is not that elegant a feature

because the diode misses the negative pulses, and additionally creates an unnec-

essary voltage drop across itself. Therefore, it is necessary to use a germanium

diode as D1, because the voltage drop is then only about 0.2 volts instead of the

0.6 volts provided by silicon diodes.

After C6 has charged close to the peak voltage, the voltage level of C6 is seen at

the gate of the JFET J1. Here again the JFET is used as a voltage-controlled resis-

tor, which lowers its resistance as the voltage at C6 goes higher. The resistance of

J1 along with R2 make up a voltage divider, so when the resistance of J1 is low,

more current is directed to ground instead of the amplifier and the input signal

is attenuated this way.

When the input signal attenuates, it also attenuates the output voltage of the

op-amp and the capacitor C6 starts to discharge through resistor R7. To say it in

other words using official compression terms, the attack time (which is approxi-
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mately the time constant of R6 and C6) of this compressor can be controlled by

changing the value of R6 and the release time is determined by the time constant

of C6 and R7. The operational amplifier is hooked up in a typical non-inverting

configuration, which offers a constant gain to the input signal. Basically the op-

amp should provide the make-up gain, but in this setup the gain control comes

from the combination of the attack and release times.

Figure 6.62 illustrates the output voltage peak detector configuration used in the

Orange Squeezer circuit. The waveforms are simulated from an idealised test

circuit where a square wave generator is feeding the capacitor through a 1 kΩ

resistor and a diode with a 0.2 V potential drop. The capacitor is connected in

parallel with a 1 kΩ resistor just like in schematic 6.61.
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Figure 6.62: Charging and discharging process of a peak detector capacitor

A short description of Figure 6.62 is that when the short pulse of the output

voltage Vout rises to 1 volt, the voltage Vcap across the capacitor builds up very

rapidly close to Vout (delimited by the 0.2 volts of the diode). After the capacitor

has reached full charge, the voltage across the capacitor stays at a constant level

because Vout stays at a constant level in this imaginary example. When Vout drops

lower, the capacitor starts discharging slowly. The discharged current from the

capacitor cannot flow past the reverse-biased diode, so the resistor R7 consumes

all the current. Since the value of R7 is large, it takes a very small amount

of current from the capacitor and the discharge process is relatively slow. The
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capacitor is charged again when the diode is forward-biased by large Vout. This

happens when Vout is about 0.2 volts higher than the voltage across the capacitor.

The threshold level in the Orange Squeezer is set with the resistor R12, which

defines the voltage at the source of JFET J1. The voltage over R12 is generated

with the constant current provided by JFET J2. In the original device, resistor

R12 is a trimmer potentiometer. It is only used once to trim a single suitable

level to correlate with the pinch-off voltage of J1, and it is not intended to be ad-

justed after the primary setting. Basically R12 could be built as a user-controlled

potentiometer to allow small adjustments on the compression threshold level.

A transient simulation from the Orange Squeezer circuit produces quite different

results depending on the frequency of the input signal and the value of resistor

R4. It is relatively unrealistic to use a sine wave as a test signal in this case, but

it gives a clean example of the functionality of the circuit. Figure 6.63 shows a

situation where the input signal is a 1 V sine wave, which at the input terminal

of the op-amp is as shown in the top part of Figure 6.63. At the beginning of the

waveform, the input amplitude at the op-amp is so large that the output is am-

plified to rails and the signal is clipped. At this point the capacitor C6 is charged

up and the result of the potential rise at the gate of JFET J1 is quickly seen as the

attenuated sine wave at the op-amp input. As the input signal attenuates, this

also stabilises the output, which after a while settles to a constant amplitude sine

wave.

The voltage levels at the gate and source pins of J1 are visualised in Figure 6.64.

The reference voltage at the source stays constant as it is controlled by the value

of R4. As the potential at the gate rises higher so that the pinch-off voltage of J1

is passed, the resistance of the JFET J1 drops and the effect of this on the input

signal is shown in Figure 6.63.

As a conclusion, the user of the Orange Squeezer pedal basically cannot control

any of the basic compressor parameters without making some own modifications.

The attack and release times can be made adjustable by replacing a few of the

resistors with potentiometers. On the other hand, it has been a good decision

from the designer of the Orange Squeezer to leave out the possibility to adjust

the compression parameters. Compression as an effect is really difficult to master

by a novice and it needs several years of experience to know the best settings. It

might also be that the pedal has only one specific sweet spot that works best for

the waveforms generated by the guitar.
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Figure 6.63: A transient response of the actual compressor circuit

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60

vo
lt

ag
e

[V
]

time [ms]

Vgate

Vsource

Figure 6.64: Gate voltage versus the reference voltage level at the source

The Orange Squeezer circuit could be improved to also sense the negative am-

plitude peaks by placing a unity gain inverting operational amplifier directly to

the output of the first operational amplifier. This will turn the negative peaks
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into positive peaks and the output from the other op-amp can be taken through

another diode to charge the capacitor C6. In that case, D2 should be the same

model as D1, and the resistor R6 should be moved after the two diodes because

otherwise the other diode will bypass the resistor and the charging current from

that branch will be different.

The basic technique of using a JFET as a key component in an amplitude limiter

circuit is commonly used and it has also been described in a scientific paper [82].

Therefore, the implementation of the Orange Squeezer is a good example of how

a limiter circuit is constructed from basic components.

Expansion is the counterpart for compression in the sense that compression de-

creases the dynamic range of the amplitude waveform, whereas expansion in-

creases the dynamic range. Obviously the threshold for the expander is set close

to the noise level, so it is on the opposite side as compared to the compressor.

Expander effects can be identified as upward or downward expanders. Upward

expanders start to process the audio when the signal level is over the threshold.

The goal is to amplify the low-amplitude sound and increase the signal-to-noise

ratio. Downward expanders seek for the parts where the audio drops below

the threshold and therefore they try to adjust the (assumed) noise signal to a

minimum level. This kind of functionality is also known as noise gating. Both

approaches actually increase the dynamic range of an audio signal.

In general, expansion is very rarely used as a guitar effect so there is no real need

to dig further into this topic. Compressors do not dramatically change the sound

of the guitar, so in that sense they cannot be counted as true guitar effect devices.

In a broader sense, compressors and expanders belong to the group of general

signal processing devices.

6.5 Frequency effects

Frequency based effects mainly use the properties of filters to alter the frequency

content and the phase of an audio signal. A basic graphic equaliser is already

a good example of a frequency ’effect’. To make life more exciting, quite often

frequency effects are implemented as sweep type of effects where some filter

function (= equaliser pattern) is swept through a range of frequencies, boosting

and attenuating a set of different frequencies over time. This creates an unique

sound that is easily identified as an effect in the frequency domain.
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The wah effect pedal is a good example of a guitar effect that boosts a certain

frequency range acting as a foot-switch movable equaliser. A guitar player using

the wah effect can choose to enhance the higher or lower upper partials of the

guitar signal by selecting a constant setting of the wah pedal. A more common

way of using the wah pedal is to rhythmically sweep up and down the frequency

range to produce a distinct ’wah-wah’ sound. The frequency boost in the wah

pedal is based on the resonance properties of a basic RLC circuit. By adding an

envelope follower to automatically control the frequency sweeping of a regular

wah pedal, the result is commonly known as ’auto-wah’. An in-depth analysis of

a simple wah effect circuit is given in section 6.6.

Other distinguishable effect types in the frequency category are pitch shifters,

which change the frequency of the played notes. While the more advanced pitch

shifters allow the user to choose the amount of applied shift, the simpler ones

just shift notes up or down in octave multiples. The ’Green Ringer’ effect pedal

presented in section 6.7 is a good example of an ’octave-up’ type of effect.[69]

6.6 The origins of the wah-wah sound

Just like the fuzz pedal is considered the king of amplitude effects, the wah ef-

fect is one of the oldest and most widely used effect in the series of frequency

categorised effects. The first wah pedals were built in the middle of the 1960’s

carrying the brand name ’Vox Wah-Wah’ among the line of other pedals manu-

factured under the Vox brand. The Vox Wah-Wah circuit appears to be a very

simple design with a small amount of components, so it is a very suitable target

for further analysis.

Figure 6.65 shows one version of a circuit diagram imitating the original Vox

Wah-Wah circuit [83]. Naturally many variations of this circuit exist, but this

specimen is considered to be the original one. At least it is the simplest wah

circuit, so it is the ideal circuit to learn about the basic electronics that makes

it all happen. From the user’s perspective the wah effect is relatively simple to

use because it has only one potentiometer that the user can adjust to filter out

a certain band of frequencies. The practical stompbox (pedal) itself uses an up-

down moving lever, which the user needs to foot-kick down and release back up

to control the frequency sweep. Therefore, the wah effect is a true stompbox in

the very literal meaning of the word.

As a quick introduction to the signal path of the circuit, the underlying transistor
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Figure 6.65: A circuit diagram of one of the Vox Wah-Wah models

configuration is very similar to the one used in the fuzz effect. The input signal

goes through the first gain stage consisting of a bipolar junction transistor Q1

and biasing resistors R1, R2 and R3. From the signal’s point of view, the resistors

R5 and R11 are very large and the impedance of C3 is very small. Therefore,

the alternating signal continues from the collector of Q1 through the path C3, R8

and C4 to the base of the second transistor Q2, from where the signal is fed back

to the base of transistor Q1. Between the feedback loop connecting transistors

Q1 and Q2, there is a basic RLC circuit consisting mainly of the components

R6, L1 and C5. This RLC resonance circuit is the heart of the wah effect, which is

based on moving the resonance frequency of the RLC section by controlling the

potentiometer R8.

6.6.1 The DC analysis of the wah effect

Since the basic circuit structure is similar to the fuzz effect, the same kind of

approach can be used to calculate quiescent values for the transistors of the wah

circuit. The most problematic part in this case is to handle the current through

resistor R7 correctly. To get a reasonable relation to the current IB1, one ’extra’

voltage equation is needed.

After removing those parts of the circuit that are hidden behind capacitors, the

wah effect DC equivalent circuit simplifies a great deal in comparison to the full
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circuit 6.65. Figure 6.66 shows the extracted DC schematic of the wah circuit.

From the viewpoint of DC signals, the parallel connection of inductor L1 and

R2

IE1

R3

IC1

I ′C1

R4

IB1

VC1

R5

I ′B1

RL

V ′

B1

IX

R6 R7

R11IB2

R9

R10

IE2

IC2
VCC

−
+

VBE1

−
+

VBE2

Figure 6.66: The wah effect DC biasing circuit model

resistor R6 has resistance RL, which refers to the internal resistance of the induc-

tor. This is because the resistance of the inductor comes from the resistance of

the coiled inductor wire, which is typically a few ohms or even less. It would be

perfectly acceptable to completely neglect resistances RL and R6 in the following

derivations.

From the equivalent DC model of the wah circuit, one can write down the or-

dinary transistor circuit current equations. The analysis results in six current

equations,

IC1 = βF1IB1 (6.65)

IE1 = (βF1 + 1)IB1 (6.66)

IC2 = βF2IB2 (6.67)

IE2 = (βF2 + 1)IB2 (6.68)

I ′B1 = IB1 + IX (6.69)

I ′C1 = IC1 + I ′B1 + IB2, (6.70)

and the three following voltage equations can also be written as

0 = VCC − I ′C1R3 − I ′B1R5 − IB1(RL +R4)− VBE1 − IE1R2 (6.71)

0 = 0 + IXR7 + I ′B1R5 − IB2R11 − VBE2 − IE2R10 (6.72)

0 = 0 + IXR7 − IB1(RL +R4)− VBE1 − IE1R2. (6.73)
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The obvious solution method is to find an expression for base current IB1. After

determining the value of IB1, all the other quiescent voltages of the circuit can

then be calculated using the value of IB1. Substituting current relations (6.69)

and (6.70) into voltage equation (6.71),

VCC = IC1R3+IB1R3+IXR3+IB2R3+IB1R5+IXR5+IB1(RL+R4)+VBE1+IE1R2,

and gathering all terms under similar current variables yields

VCC = IB1 [R5 +RL +R4 + (βF1 + 1)(R3 +R2)] + IX(R3 +R5)

+ IB2R3 + VBE1. (6.74)

Solving IB2 from equation (6.72) says that

−IB2 =
VBE2 − IX(R7 +R5)− IB1R5

R11 + (βF2 + 1)R10

,

and substituting this expression into (6.74) brings an equation

VCC = IB1

[

R5 +RL +R4 + (βF1 + 1)(R3 +R2) +
R5R3

R11 + (βF2 + 1)R10

]

+ IX(R3 +R5)−
VBE2 − IX(R7 +R5)

R11 + (βF2 + 1)R10

R3 + VBE1. (6.75)

There is still that unknown current IX giving us trouble. Using equation (6.73),

IX =
IB1(βF1 + 1)R2 + IB1(RL +R4) + VBE1

R7

,

and this needs to be inserted into equation (6.75). Doing this insertion and solv-

ing for IB1 gives the final expression in the form

IB1 =
numerator

denominator
, (6.76)

where the numerator is

VCC +
VBE2R3

R11 + (βF2 + 1)R10

− VBE1 − VBE1
R3 +R5

R7

− VBE1(R7 +R5)R3

R7(R11 + (βF2 + 1)R10)
,

and the denominator is written as

R5 +RL +R4 + (βF1 + 1)(R3 +R2) +
R3R5

R11 + (βF2 + 1)R10

+
(RL +R4 + (βF1 + 1)R2)

R7

[
(R7 +R5)R3

(R11 + (βF2 + 1)R10)
+ (R3 +R5)

]

.

Another more systematic way to analyse the circuit is to use the circuit nodes

instead of the branches as anchors for the analysis. The obvious voltage nodes
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of the circuit are VC1 and V ′
B1 but those will not give enough information about

all the branches of the circuit. In this case it is better to utilise the DC equivalent

model of the BJT and add both emitter voltage nodes VE1 and VE2 to the set.

Based on Kirchhoff’s current law, the sum of currents entering a node equals the

sum of currents leaving a node. Therefore, the current equations for the voltage

nodes VC1, V
′
B1, VE1 and VE2 are:

I ′C1 = IC1 + IB2 + I ′B1

I ′B1 = IB1 + IX

IE1 = (βF1 + 1)IB1

IE2 = (βF2 + 1)IB2

The essential currents in the above equations can be expressed with the node

voltages as:

I ′B1 =
VC1 − VB1

R5

; I ′C1 =
VCC − VC1

R3

; IB1 =
V ′
B1 − VBE1 − VE1

R4 +RL

IX =
V ′
B1

R7

; IB2 =
VC1 − VBE2 − VE2

R11

; IE1 =
VE1

R2

and IE2 is similar to IE1. Substitutions of the voltage equations into the current

equations leads to the following four equations

VCC − VC1

R3

=
βF1

βF1 + 1

VE1

R2

+
VC1 − VBE2 − VE2

R11

+
VC1 − V ′

B1

R5

VC1 − V ′
B1

R5

=
V ′
B1 − VBE1 − VE1

R4 +RL

+
V ′
B1

R7

VE1

R2

= (βF1 + 1)
V ′
B1 − VBE1 − VE1

R4 +RL

VE2

R10

= (βF2 + 1)
VC1 − VBE2 − VE2

R11

.

These equations can be organised into a matrix equation, from where each of the

node voltages can be solved using Cramer’s rule. The matrix equation is of the

form:
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Y11 Y12 Y13 Y14

Y21 Y22 Y23 0

0 Y32 Y33 0

Y41 0 0 Y44















×















VC1

V ′
B1

VE1

VE2















=

















VCC

R3

+
VBE2

R11

VBE1

R4 +RL

VBE1

R4 +RL

VBE2

R11

















where the non-zero terms in the admittance matrix are

Y11 =
1

R3

+
1

R11

+
1

R5

Y12 = Y21 = − 1

R5

Y13 =
βF1

βF1 + 1

1

R2

Y14 = − 1

R11

Y22 =
1

R5

+
1

R4 +RL

+
1

R7

Y23 = − 1

R4 +RL

Y32 =
1

R4 +RL

Y33 = − 1

R4 +RL

− 1

R2(βF1 + 1)

Y41 =
1

R11

Y44 = − 1

R11

− 1

R10(βF2 + 1)

Based on this analysis, all the other biasing voltages and currents can be solved

using the magnitudes of the node voltages.

Based on the experience so far, the analytical equations easily become too long to

handle in pen-and-paper style calculations. If one wants to continue to also solve

the frequency response equations numerically, then it is necessary to solve the

quiescent conditions to find out the value of rπ at the DC operating point. The

symbolic equations can be written to a mathematical software spreadsheet and

solved there numerically, but still the SPICE simulation software offers a much

faster way to obtain the biasing conditions and the frequency response. On the

other hand, extensive use of SPICE might not give that much insight into the

functionality of the analysed circuit.

Anyway, now that the equations for the DC analysis are derived, it is time to

move on to conduct the AC analysis to find out the frequency response of the

system. The equations presented in this section will be used for calculating the

actual biasing voltages in section 6.6.6, where the results are compared to values

obtained by simulations and prototype measurements.
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6.6.2 The AC analysis of the wah effect

To be able to derive the transfer function of the wah circuit, a small-signal model

needs to be constructed. The small-signal model is derived directly from the

original schematic 6.65 of the wah effect and it is drawn in Figure 6.67. The

transistors in the small-signal model are depicted by equivalent circuits as ex-

plained in section 1.3.10. All DC voltage sources are grounded because only

alternating signals are analysed. External alternating voltage sources have been

converted into current sources so that the nodal method can be used to analyse

the circuit.

1

RS

R1
C1

2 3
rπ1

R2

gm1vπ1

R3

4

R5

R7C2

5
C3

R81

R82

11

6

C4

7
rπ2

R10

8

gm2vπ2

R9

9

R6

R4
C5

R11

L1

10

VS/RS

Figure 6.67: The AC equivalent circuit model of the wah pedal

The leftmost current source represents the signal source that drives the signal

to the effect device. The resistance RS depicts the internal resistance of the

signal source. The possibility for the signal source to have capacitive or inductive

reactance is not considered here, but if test signals of a single frequency are used

to simulate the circuit, the frequency dependent impedance of the source is not

that meaningful. The value of the transistor’s internal resistance rπ is evaluated

analytically by using equations

gm =
|ICQ|
VT

and rπ =
βF

gm
,

where the thermal coefficient VT ≈ 25 millivolts and the quiescent collector cur-

rent ICQ is obtained from the biasing calculations.

As explained in section 1.2.6 covering the Laplace transform, for sinusoidal test

signals one does not need to care about the Laplace transform of the sinusoidal

source itself if one is only interested in the frequency response.
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The mathematical equations based on the small-signal model of the wah circuit

can be written directly in matrix format as Y × V = I. Because there are 11

individual voltage nodes in the small-signal model, the admittance matrix will

become a 11x11 square matrix,

Y =



























Y11 −Y12 0 0 0 0 0 0 0 0 0

−Y21 Y22 −Y23 0 0 0 0 0 −Y29 0 0

0 −Y32 Y33 0 0 0 0 0 0 0 0

0 0 0 Y44 −Y45 −Y46 0 0 0 −Y410 0

0 0 0 −Y54 Y55 0 0 0 0 0 −Y511

0 0 0 −Y64 0 Y66 −Y67 0 0 0 −Y611

0 0 0 0 0 −Y76 Y77 0 −Y79 0 0

0 0 0 0 0 0 0 Y88 0 0 0

0 −Y92 0 0 0 0 −Y97 0 Y99 −Y910 0

0 0 0 −Y104 0 0 0 0 −Y109 Y1010 0

0 0 0 0 −Y115 −Y116 0 0 0 0 Y1111



























and the related voltage and current vectors are

V =



























V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11



























; I =




























VS

RS

0

gm1 (V2 − V3)

−gm1 (V2 − V3)

0

0

gm2 (V6 − V7)

−gm2 (V6 − V7)

0

0

0




























.

The matrix equation is so large that the nonzero elements are only indicated by

the admittance symbol Y with subscripts referring to the element in the matrix

as Yrow,column. All the matrix elements derived from the small-signal model are

listed below and they are intended to be substituted into the 11x11 admittance

matrix shown above.
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Y11 =
1

RS

+
jωC1

1 + jωC1R1

Y12 = Y21 =
jωC1

1 + jωC1R1

Y22 =
1

R4

+
1

rπ1
+

jωC1

1 + jωC1R1

Y23 = Y32 =
1

rπ1

Y29 = Y92 =
1

R4

Y33 =
1

rπ1
+

1

R2

Y44 =
1

R3

+
1

R5

+
1

R11

+ jωC3 Y45 = Y54 = jωC3

Y46 = Y64 =
1

R11

Y410 = Y104 =
1

R5

Y55 =
1

R81

+ jωC3 Y511 = Y115 =
1

R81

Y66 =
1

R11

+
1

rπ2
+ jωC4 Y67 = Y76 =

1

rπ2

Y611 = Y116 = jωC4 Y77 =
1

rπ2
+

1

R10

+ jωC5

Y79 = Y97 = jωC5 Y88 =
1

R9

Y99 =
1

R4

+
1

R6

+
1

jωL1

+ jωC5 Y910 = Y109 =
1

R6

+
1

jωL1

Y1010 =
1

R5

+
1

R6

+
1

R7

+
1

jωL1

+ jωC2 Y1111 =
1

R82

+
1

R81

+ jωC4

To be able to solve the node voltages, the transconductance terms from the right

side of this matrix equation need to be moved to the admittance matrix on the

left side. The transconductance term gm1 in the current vector on rows 3 and 4 is

multiplying voltages V2 and V3. Therefore, gm1 can be moved to the admittance

matrix on rows 3 and 4 to columns 2 and 3 which multiply voltages V2 and V3

in the voltage vector. The move of gm1 leads to the modified admittance matrix

elements

Y ′
32 = −gm1rπ1 + 1

rπ1
Y ′
33 =

gm1rπ1 + 1

rπ1
+

1

R2

Y ′
42 =

gm1rπ1
rπ1

Y ′
43 = −gm1rπ1

rπ1
.

A similar move for gm2 on rows 7 and 8 of the current vector results in four

elements

Y ′
76 = −gm2rπ2 + 1

rπ2
Y ′
77 =

gm2rπ2 + 1

rπ2
+

1

R10

+ jωC5

Y ′
86 =

gm2rπ2
rπ2

Y ′
87 = −gm2rπ2

rπ2
.

In each of the above equations, gm1rπ1 = βF1 and gm2rπ2 = βF2. The output

voltage is taken from the voltage node 5 as defined in Figure 6.67. The use

of Cramer’s rule is already explained in previous sections, and due to the huge

size of the admittance matrix, the determinant division is not written here. The
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explicit expression of the transfer function would also be so lengthy that there is

absolutely no point to solve it by hand. To solve the output node voltage V5, the

determinant division following from Cramer’s rule can be evaluated numerically

using mathematical software. An example of using Octave to evaluate transfer

functions is given in Appendix C.

6.6.3 Side effect: RLC circuit resonance

The heart of the wah effect is a basic RLC circuit that creates a resonance phe-

nomenon to boost a certain range of frequencies. As the location of the resonance

in the frequency axis is swept from one frequency range to the other and back

again, it creates the sound typical to a wah pedal. From another point of view,

the wah effect can also be considered a moving band-pass filter having a centre

frequency that is changed with a potentiometer. The filtering effect is achieved

by the resonance properties of a RLC circuit.

To back up the introduction to the basic properties of RLC circuits, Figure 6.68

shows the series- and parallel-connected RLC circuits. Using the notations pro-

V

I R

L

C

(a) Series RLC

L R CI

+

−

V

(b) Parallel RLC

Figure 6.68: Series and parallel RLC networks

vided in Figure 6.68a, the series-connected RLC circuit is represented by the

differential equation

L
dI

dt
+RI +

1

C

∫

I dt = V.

This differential equation is actually just a voltage equation that follows from

the basic Kirchhoff’s voltage law. The current loop mesh analysis method states

that the sum of all voltage drops within a loop are equal to the source voltage

connected to the loop. After applying the Laplace transform, the differential

equation is written
(

sL+R +
1

sC

)

I = V, (6.77)
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where the three terms inside the parentheses represent impedances from each

individual component.

If the parallel-connected RLC circuit is analysed, it is obvious to choose the nodal

analysis method relating to Kirchhoff’s current law. The nodal analysis method

uses admittances instead of impedances because the differential equation de-

scribing the circuit is written as

C
dV

dt
+

1

R
V +

1

L

∫

V dt = I.

The Laplace transformed equation of the parallel circuit reads

(

sC +
1

R
+

1

sL

)

V = I, (6.78)

where the three terms inside the parentheses represent admittances from each

individual component.

To identify the resonance frequency, the impedance and admittance properties of

RLC circuits need to be analysed. From the equations using the Laplace variable

s, the impedance of the series circuit is Zs = R + sL+
1

sC
. In the special case of

sinusoidal input signals, s = jω so that

Zs = R + j

(

ωL− 1

ωC

)

.

Clearly the impedance needs to be minimised in order to get a maximum current

flowing in the circuit. The maximum state of current flow is reached when the

imaginary part of the impedance expression vanishes. Therefore, the resonance

frequency can be determined from equation

ωL =
1

ωC
⇒ ω =

1√
LC

.

Because the angular frequency ω equals 2πf , the actual resonance frequency of

the series circuit is

fs =
1

2π
√
LC

.

The frequency response of resonance circuits is commonly analysed by plotting

the power magnitude of the circuit on a decibel scale. The resonance properties

are often evaluated by measuring the width of the resonance area between −3 dB

frequencies around the resonance frequency ω0. The −3 dB point in a frequency

response graph corresponds to a frequency where the signal power is half of the

maximum value at the resonance frequency. Around the resonance peak, the
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bandwidth δω is measured as the difference ωH −ωL, where ωH is the higher and

ωL the lower −3 dB frequency. The quotient

δω

ω0

=
1

Q
,

defines a quantity Q named as the quality factor. Without further derivation, the

quality factor Q that defines the sharpness of the resonance peak in the series

resonance circuit is defined as

Qs =
1

R

√

L

C
.

In practical applications, resistance is the major contributor to the sharpness.

The smaller the resistance is, the higher and better Qs is.

The reasoning for finding the resonance frequency is similar in the case of the

parallel circuit, except that instead of minimising impedance, one needs to min-

imise admittance from the equation

Yp =
1

R
+ j

(

ωC − 1

ωL

)

. (6.79)

However, despite the slightly different approach, in case of ideal components this

leads to the same resonance frequency term

ωC =
1

ωL
⇒ ω =

1√
LC

,

fp =
1

2π
√
LC

.

The quality factor for the parallel circuit is the inverse of the series circuit, namely

Qp = R

√

C

L
.

A lot of matters are still unclear. Is the RLC configuration in the wah circuit series

or parallel? And how is it possible to change the resonance frequency of an RLC

circuit with one potentiometer since the resonance frequency does not depend

on resistance at all? Let Mr. Miller answer all of these questions.

6.6.4 Side effect: the Miller theorem

The Miller effect, a.k.a. the Miller theorem, states that any impedance connected

between voltage nodes Vi and Vj in a circuit can be reduced to two separate

impedances between nodes Vi – VN and Vj – VN , where VN represents the ground

reference of the circuit. The Miller-transformed impedances are scaled with a
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Figure 6.69: The Miller theorem explained

fractional potential difference between nodes Vi and Vj. To make it more clear,

Figure 6.69 is drawn to back up the explanation of the Miller theorem.

The circuit of Figure 6.69 has N nodes with node voltages V1, V2, V3, . . . , VN ,

where the ground node VN = 0. Nodes 1 and 2 are interconnected with impedance

Z ′. The expression for current I1 can be tweaked as

I1 =
V1 − V2

Z ′ =
V1(1−K)

Z ′ =
V1

Z ′

(1−K)

=
V1

Z1

, (6.80)

where K =
V2

V1

. For current I2 one can apply similar reasoning:

I2 =
V2 − V1

Z ′ =

V2

(

1− 1

K

)

Z ′ =
V2

KZ ′

(K − 1)

=
V2

Z2

. (6.81)

The current equations shown above also define the new impedance factors that

scale the original impedance Z ′ with the factor K, which is the voltage ratio

between the two nodes.

Since the nodal equations derived from circuits 6.69a and 6.69b are identical,

the two networks are equivalent. The essential result of the Miller theorem is

that the equivalent impedances Z1 and Z2 separated between the two nodes are

scaled by the voltage ratio of the two nodes. When any impedance is used for

connecting the input and output nodes of an amplifier circuit, the impedance

changes dynamically with the gain of the amplifier element.

This is what happens in the wah circuit. The value of capacitance C5 is changed

by controlling the base pin voltage of Q2 with potentiometer R8. Therefore, the
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voltage ratio
V7

V9

changes and directly affects the impedance of the capacitance

C5, which in the Miller equivalent circuit is connected parallel to the inductor L1

and the resistor R6. This makes the RLC configuration of the wah circuit to be

in parallel, at least approximately, since there are other passive components in

direct contact with the RLC section. Figure 6.70 indicates the Miller equivalent

small-signal model of the wah circuit.
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C5210
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Figure 6.70: The wah small-signal model using the Miller equivalent capacitor

Changes in the resistance of the potentiometer R8 reflect signal level changes to

node 6. Node 6, on the other hand, defines the voltage vπ2, which controls the

current gain of the transistor. As the current at node 7 changes, the voltage over

resistor R10 changes accordingly. This directly affects the voltage ratio K =
V7

V9

,

which controls the impedance of capacitors C51 and C52 in the Miller equivalent

circuit. Based on equations (6.80) and (6.81), the formulae to evaluate the values

for the Miller capacitances are

C51 = C5(1−K) and C52 = C5
K − 1

K
,

where in practise the gain factor K is evaluated from the original small-signal

model. Therefore, the Miller capacitances will be complex-valued. Sometimes a

good approximation of real capacitance values are obtained by taking the abso-

lute value of K, but this should not be taken as granted.

Based on the analysis of basic RLC circuits and the Miller theorem, the resonance

effects in the wah circuit could be approximated by evaluating the impedance

curves of the parallel RLC circuit. The impedance of the parallel circuit is evalu-

ated simply as the inverse of the admittance expression given in equation (6.79).
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Figure 6.71 visualises a few of the impedance curves evaluated using the com-

ponent values L = 0.5 H and R = 33 kΩ, which are taken directly from the wah

circuit. The capacitance is varied around the nominal value of C5, which is also

indicated in the wah circuit.
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Figure 6.71: Impedance curves of a parallel RLC circuit

Because the gain of the amplifier stage Q2 changes with frequency, the Miller

capacitance values also change with frequency. This means that in this kind of

resonance setup it is at least theoretically possible to get even two resonance

peaks with a fixed resistance value of R8.

6.6.5 A SPICE model for the wah circuit

To prepare a netlist for SPICE simulations, it is better to use a dedicated schematic

editor to draw the circuit and to generate the netlist automatically. For this rea-

son, the schematic shown in Figure 6.72 was drawn using the gschem schematic

editor. The schematic includes all the components assigned with their actual val-

ues. The potentiometer R8 is split into two separate resistors R81 and R82, so

that the voltage divider functionality can be simulated by changing simultane-

ously the values of the two resistors.

In addition to real resistor and capacitor values, the transistor gains and satura-

tion currents need to be defined as device models in gschem to depict the true
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Figure 6.72: The wah effect schematic drawn with gschem

transistor behaviour. When the transistor models are included in the schematic

editor, the automatically created netlist file will have the correct model included.

This time no fancy transistor parameter evaluation is needed, since in the wah

circuitry one can use basic npn transistors with SPICE models provided by man-

ufacturers.

For the wah effect, it is better to choose transistors with a current gain factor of

about 200 or over because otherwise the variations in the gain controlled capac-

itance might be too small. This is why the 2SC2240 transistors were chosen for

this construction. This transistor has a βF of approximately 220 and it is espe-

cially designed for low-noise audio applications. The equivalent transistor model

corresponding to 2SC2240 is BC550, which can also be used in this circuit. Usu-

ally the BC550 are sold a bit cheaper.

Unfortunately an exact SPICE model for 2SC2240 could not be found from the

datasheet of the manufacturer. Luckily, the transistor parameters are not critical

in this application, so it is enough to just define the saturation current and the

average βF in the SPICE transistor model. The other parameters can be left to

default SPICE values.

When using the gEDA design tools collection in Linux, the netlist can be created

from the schematic of Figure 6.72 by using the command
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gnetlist -g spice-sdb -o wah_net.net wah.sch

where the output file named as wah_net.net is created from the schematic file

wah.sch. The automatically created netlist file is shown here for convenience.

*============== Begin SPICE netlist of main design ============

R82 11 0 50k

Vin 0 1 DC 0 AC 1 SIN(0 0.01 440)

R81 11 5 50k

C4 6 11 0.22uF

C3 4 5 0.22uF

R1 1 13 68k

C2 10 0 4.7uF

C5 9 7 0.01uF

C1 13 2 0.01uF

R6 9 10 33k

L1 9 10 500mH

V1 12 0 DC 9

R7 0 10 82k

Q2 8 6 7 NPN2

.MODEL NPN2 NPN (Is=1.0e-14 Bf=220)

Q1 4 2 3 NPN1

.MODEL NPN1 NPN (Is=1.0e-14 Bf=220)

R10 0 7 10k

R9 8 12 1k

R11 4 6 470k

R5 10 4 470k

R3 4 12 22k

R2 0 3 470

R4 9 2 1.5k

.end

Obviously one is interested in the frequency response of the circuit with different

values of potentiometer R8. The transient response is also interesting in the sense

that one sees how cleanly does the circuit reproduce a sinusoidal test signal.

To perform the needed analysis with the help of a SPICE engine, the adequate

control commands are added to the beginning of the netlist file. The frequency

response simulation is run three times for different settings of the potentiome-

ter R8 which adjusts the centre frequency of the wah-filter. The operating point

analysis is also added to see how the transistors are biased in the static DC con-

figuration. The simulation control commands are now set as

.control

ac dec 90 10 100K

alter R81 1k

alter R82 99k

ac dec 90 10 100K

alter R81 99k

alter R82 1k

ac dec 90 10 100K

set filetype=ascii

write wahdata.txt db(ac1.v(5)) db(ac2.v(5)) db(ac3.v(5))

gnuplot wah_ac db(ac1.v(5)) db(ac2.v(5)) db(ac3.v(5))

alter R81 50k

alter R82 50k

tran 1us 30ms

gnuplot wah_tran tran3.v(5) tran3.v(1)
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.endc

.OP

and the results are requested to be saved to a gnuplot formatted data file. Even-

tually, the simulation is run using the command

ngspice -b wah_net.net

which prints the operating point information to the computer screen and creates

a data file wah_tran.data to be plotted later with gnuplot.

6.6.6 Results of simulations, calculations and measurements

Regarding the DC analysis of section 6.6.1, the component values indicated in

the schematic 6.72 were inserted into the equations. The numerical results were

obtained for all transistor pin voltages. The internal potential difference VBE of

the 2SC2240 transistors in the wah circuit was estimated to be approximately

0.6 V, and this value was also used in the calculations.

For the DC simulation part using SPICE, the netlist from the circuit of Figure

6.72 was loaded into ngspice and analysed with the operating point (.OP) com-

mand, which was written inside the netlist file. The simulation results for DC

bias voltages were read from the output listing provided by ngspice.

To be able to compare the theoretical results to prototype measurements, the

wah circuit using 2SC2240 transistors and 10 % precision resistors and capac-

itors was built to a small solderless breadboard, a.k.a. a plugboard, where the

components can be replaced easily just by plugging them onto the board. A

regular multimeter was used for measuring the transistors’ quiescent voltages.

The 500 mH inductor is relatively large-valued, so understandably it was difficult

to find one directly from the shelf. The solution for the inductor problem was

to buy three 150 mH inductors and connect them in series (still lacking that 50

mH). The only thing that needs to be taken care of in this kind of solution is that

the physical distance between the inductors on the plugboard has to be as large

as possible to avoid unnecessary mutual inductance between the inductors.

The simulated, calculated and measured quiescent values of the transistors Q1

and Q2 of the wah circuit are gathered into Table 6.4 for comparison purposes.

As it almost always seems to be the case, the results obtained analytically and ex-

perimentally are generally in good agreement, but there is always that one black

sheep in the family of results. This time it is the base voltage of Q2, which differs
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quite significantly from the analytical results. Actually, this measured voltage

seems to fight against the laws of nature, since the base voltage is lower than

the emitter voltage. This definitely should not be the case when npn transistors

are used. Anyhow, this result is accepted and documented, because no real bugs

were found from the connections in the prototype circuit. The explanation for

this phenomenon is not known.

Table 6.4: Wah circuit transistor quiescent values

value simulated calculated measured

VB1 0.69 0.60 0.68

VC1 5.01 5.15 5.00

VE1 0.08 0.08 0.08

VB2 4.24 4.39 3.05

VC2 8.64 8.64 8.66

VE2 3.62 3.79 3.61

Next it was the time to examine the frequency response of the circuit. Firstly,

a comparison between the manual calculations and the SPICE simulations was

made by plotting the response curves into the same graph. Figure 6.73 can be

drawn from the results of the simulations and the calculations.

The simulations and the calculations of the frequency response are this time in

perfect agreement. This is not surprising because a very basic SPICE model was

used for the transistors and that leads to the expectation of similar results. Ac-

cording to the simulations, the resistance value of the potentiometer R8 shifts

the resonance frequency of the circuit between 400 Hz and 2000 Hz. The reso-

nance peaks at low frequencies are sharper than at the higher frequencies. The

potentiometer should be chosen as a logarithmic audio taper, since then the fre-

quency shift would occur linearly with the movement of the potentiometer. It

was a huge surprise to notice how similar these frequency response curves are to

the impedance curves of the parallel RLC circuit in Figure 6.71. It seems that the

wah circuit is actually working quite close to an ideal parallel RLC circuit. This

is certainly not evident when looking at the wah schematic.

As a bonus from the SPICE simulations, one can get the time dependent signal

waveform for a simple test signal as the basic sine wave. The results of this

transient simulation are shown in Figure 6.74.
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Figure 6.74: A transient simulation of a sine wave input to the wah circuit

The transient simulation is run using some random frequency and random poten-

tiometer setting because the initial idea was just to see whether the wah circuit

distorts the input signal in any way. These simulated waveforms can be com-

pared directly to the measured waveforms, but unfortunately the functionality of

the effect cannot be sufficiently verified in the time domain.
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Figures 6.75 and 6.76 present some selected oscilloscope traces measured from

the prototype circuit. A computer sound card was used as the function generator

to feed in a relatively large amplitude sine wave to see how easily the circuit

starts to distort. The locations of the resonance peaks were approximately deter-

mined by playing a logarithmic sine sweep from 50 Hz to 4000 Hz and checking

from the oscilloscope screen at what frequency the maximum amplitude output

occurs.

Figure 6.75 shows the input and output waveforms when the wah potentiometer

is at minimum position. In this case the highest amplitude in the output was

measured at 375 Hz, and the waveform in the figure is a snapshot taken at this

frequency.
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Figure 6.75: The wah effect potentiometer at minimum

From Figure 6.75 it is easy to see that the gain of the circuit is almost exactly

unity, although the simulated gain at this setup should have been about 20 dB.

This indicates that the prototype build was not very successful, but still is has

the lowest resonance peak at the correct frequency. It seems as if the peak of the

prototype filter is not nearly as sharp as the simulations indicated. The only nice

thing is that the minimum resonance frequency is almost exactly the same as the

simulations predicted.

As a reference, Figure 6.76 shows the input and output waveforms when the
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wah potentiometer is at maximum position. In this case the highest amplitude of

the output signal was measured at 2475 Hz, and the waveform in the figure is a

snapshot taken at this frequency.
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Figure 6.76: The wah effect potentiometer at maximum

The resonance peak is found at the correct frequency and now the circuit gives

a larger gain, but still the gain is smaller compared to what was expected after

the simulations. Also the gain at the higher frequencies should have been a little

bit smaller than at the lower frequencies. These observations indicate that the

prototype build did not succeed as expected.

Due to a lack of decent measuring equipment, a basic computer sound card was

used for recording the full range frequency response of the wah prototype circuit.

A sound card was temporarily used as the measurement instrument because the

available oscilloscope did not have enough memory to record the full frequency

range. The sound card was also used as a signal generator, from where the sine

sweep was played as an audio file. The sine sweep was a constant amplitude

logarithmic frequency sweep from 50 Hz to 4000 Hz, just to cover the expected

tuning range of the wah prototype.

Figure 6.77 shows the results of the sweep ’measurement’. The upper waveform

is recorded with the wah potentiometer at minimum, and the lower waveform

is with the wah potentiometer at maximum. Unfortunately, the sound card had
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Figure 6.77: Wah effect frequency sweep waveforms

a loading effect on the wah prototype circuit, and the results for the lower res-

onance frequency of the circuit were not the same as measured with the oscil-

loscope. The lower resonance frequency according to the sound card recording

was about 750 Hz, and the higher resonance frequency was the same 2400 Hz as

it was with the oscilloscope, but the sine wave was distorted because of the load-

ing effect of the sound card. Somehow the low-frequency resonance did actually

miss the sharp peak and the resonance area was much more widespread than the

simulations indicated.

Furthermore, from Figure 6.77 it is only possible to compare the sweep wave-

forms between the low and high resonance peaks. While doing the recording

with the sound card, the attenuation factor was different for both of the wave-

forms, and this cancels the possibility to directly compare the actual amplitude of

the low- and high-frequency sweep envelopes. Nevertheless, Figure 6.77 shows

reasonably well the feature of the wah effect; basically it can be considered as

a parallel RLC circuit, where the resonance frequency can be controlled with a

simple potentiometer. This is the complete functional description of the wah ef-

fect in a nutshell. Nothing fancy from theoretical point of view (except for the

clever use of the Miller effect), but still the wah is an awesome sounding effect.

6.7 An octave doubler effect

There exist many different pitch changing effects, but only a few of them are

simple analogue based effect devices. One good example of a simple analogue

design is the so-called ’Green Ringer’ pedal designed by Dan Armstrong at the

beginning of 1970’s. The schematic of the ’Green Ringer’ circuit was obtained
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from the Tonepad website [84] and is drawn in Figure 6.78. The Green Ringer

pedal is categorised as an ’octave-up’ effect, which is expected to double the

frequency of the input signal, at least if the signal is a simple sinusoid. Further

analysis indicates that for more complex signals it is not that evident that all

frequency components get doubled.

Q1

R3

R5R4

R2

C1

RS

VS R7

R6

Q2

C2

C3

R8

R9

D1

D2

R10

R11

Q3

R12

C4

R13

Vout

VCC

9 V

Figure 6.78: A circuit diagram of the Green Ringer effect

A short description of the signal path is as follows: the input signal from the

guitar is delivered to the base of transistor Q1 through a DC coupling capacitor

C1. Transistor Q1 is connected in a basic amplifier configuration with biasing

resistors R2, R3, R4 and R5. Transistor Q2 is used for splitting the signal into two

separate paths that have a phase difference of 180 degrees with equal gain. If

the input signal is a simple sine wave, this phase difference mirrors the signal

to positive and negative halves. The capacitors C2 and C3 isolate the DC voltage

levels on each side, since the voltage divider system using resistors R8, R9, R10

and R11 sets the bases of the diodes D1 and D2 at equal potential. The circuit

uses the two equally biased diodes to conduct the positive and the negative half

of the input signal as positive halves, so eventually the frequency of the signal

at the base of Q3 is doubled to the next octave. The Green Ringer stompbox is

powered by a 9 volt battery, which is typical for the majority of effect pedals.

6.7.1 The DC analysis of the Green Ringer effect

The analytical biasing calculations for transistor Q1 can be handled with equa-

tion (1.91) presented already in the introductory section. The biasing scheme of
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this circuit follows the standards of a good amplifier design, and therefore no

distortion is expected out of this effect.

From the schematic 6.78 it is seen that the base voltage at Q2 equals the quiescent

collector voltage VCQ1 of transistor Q1. From here it is easy to identify that

VEQ2 = VCQ1 + VBEQ2,

and the emitter current

IEQ2 =
VCC − VEQ2

R6

,

which can be used for solving the collector voltage

VCQ2 ≈ R7IEQ2,

because the assumption is that IEQ2 ≈ ICQ2.

The voltages around Q3 are more difficult to solve. There might be a more exact

way to determine the biasing of Q3, but lack of experience sometimes forces to

crude approximate methods. In the active mode, the emitter current of Q3 has a

maximum value

IEQ3(max) ≈ VCC

R12

.

With the choices of VCC = 9 V and R12 = 10 kΩ, this maximum emitter current

will be about 1 mA. If the DC current gain factor βF of Q3 is approximately 100,

then the base current IBQ3 (moving towards the emitter) is about 10µA. This is

the maximum current that the base sucks from the node point between resistors

R8 and R9. If this point is indexed as node 8 and the corresponding voltage at

that node is labelled as V8, the voltage

V8 = VCC − (I + IBQ3)R10 = IR11, (6.82)

and the unknown current must be determined. From equation (6.82)

I =
VCC − IBQ3R10

R10 +R11

, (6.83)

and therefore

V8 =
VCC − IBQ3R10

R10 +R11

R11. (6.84)

From here onwards just calculate the voltage drop over R8 and R9 since the base

current IBQ3 is divided equally between these two resistors. Then use the voltage

drop of the ideal diode for D1, D2 and for the base-emitter junction of Q3. This

approximate procedure will reveal the emitter voltage VEQ3.
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6.7.2 The AC analysis of the Green Ringer effect

At first thought, the frequency response of the Green Ringer circuit is difficult

to analyse by means of transfer functions because of the diodes in the circuit.

Diodes are nonlinear components, so that if the analytical diode model

Id = IS
(
eV/VT − 1

)

is used in the nodal analysis that solves a set of linear equations, the solution

cannot be found in symbolic form. For this reason, some approximate model

would be needed.

For an approximate small-signal model, it is possible to linearise the diode cur-

rent equation by taking the first two terms from the power series expansion of

the exponential function. From there it follows that for very small alternating

currents the diode acts approximately as a normal resistor parallel with a nor-

mal semiconductor junction capacitance. The junction capacitance affects only

in the high-frequency range, and in audio applications the capacitance can be ne-

glected. Therefore, in the small-signal model one could replace the diodes with

resistors.

Even when it is possible to create a decent small-signal model of the whole Green

Ringer circuit, the troublesome pen-and-paper AC analysis is skipped alltogether,

because the Green Ringer circuit does not offer any drastically new tricks in the

frequency domain. By making the AC analysis, one could only check whether the

low-frequency response of the circuit is designed adequately. This does not tell

much about the functionality of the circuit. The main idea of the circuit relies on

the transient properties of the diodes when using them on the verge of cut-off to

conduct half of the waveform and cut the other half. This would not be revealed

in the traditional frequency response analysis.

As a related topic to transient time domain diode modelling, research articles

[85] and [86] describe numerical approximation methods to achieve realistic

diode modelling equations in distortion effect circuits, where the small-signal

approximation is not valid anymore due to larger signal magnitudes.

6.7.3 A SPICE model for the Green Ringer circuit

To prepare for SPICE simulations, the Green Ringer circuit presented in Figure

6.78 is redrawn with the gschem schematic editor. Figure 6.79 shows the Green

Ringer schematic including the component values used in the simulations.
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Figure 6.79: The Green Ringer effect schematic drawn with gschem

In addition to real resistor and capacitor values, the transistor gains and satura-

tion currents need to be defined as model parameters to the gschem transistor

properties sheet. Both 2N3906 and 2N5088 are very basic silicon transistors,

and the SPICE parameters for them are easily found from component-specific

datasheets. The diodes used here can be almost any diodes as long as they have

quite accurately defined voltage drop across them. The SPICE model used for the

diodes just defines the saturation current, so basically the default SPICE diode

model is used in the simulations.

When using the gEDA design tools collection in Linux, the netlist for SPICE simu-

lations is created from the gschem schematic of Figure 6.79 with the command

gnetlist -g spice-sdb -o greenrng_net.net greenrng.sch

where the output file named as greenrng_net.net is created from the schematic

file greenrng.sch. The automatically created netlist file is as follows:

*============== Begin SPICE netlist of main design ============

Q2 7 4 6 PNP1

.MODEL PNP1 PNP (Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 Bf=180.7 Ne=1.5 Ise=0 Ikf=80m Xtb=1.5

+ Br=4.977 Nc=2 Isc=0 Ikr=0 Rc=2.5 Cjc=9.728p Mjc=.5776 Vjc=.75 Fc=.5

+ Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n Tf=179.3p Itf=.4 Vtf=4 Xtf=6 Rb=10)

V2 0 2 DC 0 AC 1 SIN(0 0.05 440)

V1 1 0 DC 9

D2 10 11 Dido

.MODEL Dido D (Is=1.0e-15)

D1 9 11 Dido

R8 8 9 68k
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R9 10 8 68k

R1 0 2 2200k

R4 3 1 560k

R2 0 3 160k

Q3 1 11 12 NPN1

Q1 4 3 5 NPN1

.MODEL NPN1 NPN (Is=5.911f Xti=3 Eg=1.11 Vaf=62.37 Bf=1.122K Ne=1.394 Ise=5.911f Ikf=14.92m

+ Xtb=1.5 Br=1.271 Nc=2 Isc=0 Ikr=0 Rc=1.61 Cjc=4.017p Mjc=.3174 Vjc=.75 Fc=.5

+ Cje=4.973p Mje=.4146 Vje=.75 Tr=4.673n Tf=821.7p Itf=.35 Vtf=4 Xtf=7 Rb=10)

R13 0 13 47k

R12 0 12 10k

C4 12 13 0.1uF

C3 7 10 0.047uF

C2 6 9 0.047uF

C1 2 3 0.047uF

R10 8 1 22k

R6 6 1 10k

R11 0 8 22k

R7 0 7 10k

R3 0 5 6.2k

R5 4 1 18k

.end

The frequency response would not reveal anything special in this case, so the

only meaningful analysis of the circuit would be the transient simulation. For this

purpose, the simulation control commands are set for the transient simulation by

adding the control statements

.control

tran 1us 20ms

gnuplot grn_tran tran.v(13) tran.v(2)

.endc

.OP

where the results of the simulation are requested to be saved to a gnuplot for-

matted data file. Eventually, the simulation is executed with ngspice using the

command

ngspice -b greenrng_net.net

which prints the operating point information to the computer screen and creates

a data file grn_tran.data to be plotted later with gnuplot.

6.7.4 Results of simulations, calculations and measurements

Regarding the DC analysis of section 6.7.1, the component values indicated in the

schematic 6.79 were inserted into the equations and evaluated numerically using

Octave. Numerical results were obtained for all transistor and diode pin voltages.

The internal potential difference VBE of the 2N3906 and 2N5088 transistors in

the Green Ringer circuit was estimated to be approximately 0.6 V, and this value

was also used in the calculations.
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Regarding the DC simulation in SPICE, the netlist from the circuit of Figure 6.79

was loaded into ngspice and analysed with the operating point (.OP) command,

which was written inside the netlist file as indicated in the previous section. The

simulation results for DC bias voltages were read from the output listing provided

by ngspice.

For real world measurements, the Green Ringer circuit shown in Figure 6.79 was

built on a small solderless breadboard, a.k.a. a plugboard, where the components

can be replaced easily just by plugging them onto the board. While keeping the

circuit in a static DC configuration, a regular multimeter was used for measur-

ing the transistors’ quiescent voltages. The simulated, calculated and measured

quiescent values are gathered in Table 6.5 for comparison purposes.

Table 6.5: DC operating point voltages of the Green Ringer circuit

value simulated calculated measured

VB1 1.95 1.95 1.71

VC1 5.20 5.09 5.37

VE1 1.32 1.35 1.33

VB2 5.20 5.09 5.37

VC2 3.11 3.31 2.82

VE2 5.87 5.69 6.08

VB3 3.97 3.45 3.94

VE3 3.33 2.85 3.63

VD1 4.47 4.05 4.13

VD2 4.47 4.05 4.13

V8 4.49 4.39 4.41

Mostly the analytically obtained voltages are similar to the measured ones, but

of course a few deviations exist. Especially the voltage at the diode pins is some-

thing that differed significantly for all methods of analysis. The approximate

derivation of the biasing voltages of transistor Q3 was also not very successful,

as the manually calculated value of VE3 clearly differs from the simulated and

measured values.

Transient simulations in SPICE were carried out using a 440 Hz sine wave as

the test signal. The results of the simulation are shown in Figure 6.80, which

verifies that the output signal has a frequency of two times the input signal. At
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the beginning of the waveform there seems to be an initial transient effect that

alters the behaviour of the output signal for a short while.
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Figure 6.80: The simulated input and output signals of the Green Ringer circuit

In the prototype measurements, a computer sound card was used as a signal

source, from where a 440 Hz sine wave was played out to the input terminals of

the Green Ringer circuit. The input and output waveforms were measured with

a digital storage oscilloscope and saved in a .cvs file format for later plotting

with gnuplot. Figure 6.81 indicates that the circuit works as the simulations

predicted, although the DC biasing of the prototype circuit differed from the

simulation values. A controlled test for verifying the Green Ringer behaviour

with more complex input signals was not done, but the ear indicates that the

octave doubling effect is not achieved in this case.

The ’ad-lib’ testing of the prototype circuit revealed that the ringer-effect can also

be applied without clipping with relatively high input voltages close to 1 V. The

Green Ringer raises the pitch of the tone by one octave, but clearly it only works

as intended for nearly theoretical signals that resemble more or less pure a sine

wave. Therefore, if the effect is used when playing chords, the effect sounds

quite horrible. Unfortunately this effect device does not offer much material for

theoretical analysis from the scientific perspective.
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Figure 6.81: Measured input and output waveforms of the Green Ringer effect

6.8 Phase effects

When stepping towards more complicated circuitry, up comes the almighty phaser

and the even mightier flanger. These two effects are the ones to cover under the

topic of phase effects, although the flanger is more of a time-based delay effect

than an actual phase-shifting circuit. But since the basic idea of notch filters is

used both in phasers and flangers, it is better to analyse both effects under a

common section.

Although phase shifting had been used as an effect in studio recordings for some

time already, the first phaser and flanger guitar pedals came to the markets in

early 1970’s. As a separate effect unit, these pedals clearly offer more possibili-

ties to tweak the sound because the distortion effect and basic tone control are

usually built in as separate sections into the amplifiers.

6.9 A phase shifter

Due to the complexity of implementation by purely analogue components, only

a few simple phase shifters have been manufactured. Good examples for further

analysis are the commercial effect pedals carrying brand names ’MXR Phase 45’

and ’MXR Phase 90’, the big brother of MXR Phase 45. These popular effect

pedals were manufactured by a company called MXR Innovations during the
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years 1974 – 1980 along with other guitar effect pedals in the categories of

distortions, delays and flangers [69, p. 82].

Just like all the effects already covered, a phase shifter is based on basic tech-

niques of signal manipulation. In a general phase-shifting effect, the sound is

modified using a stack of voltage-controlled all-pass filters, which do not filter

out any frequencies but only alter the phase of the frequency components of the

signal. This phase-modified signal is summed to the original input signal, which

is taken to the output through a separated signal path. The idea can be made

more understandable using a signal flow graph, which shows the route of the

signal and the basic operations done to the signal as it progresses through the

system. A simplified black box flow graph representing the phase shifter effect is

depicted in Figure 6.82.

+

×

input output

alternating
phase shift

rate   
depth

shape

Figure 6.82: A signal flow graph of a typical phase-shifting effect

In a typical phase-shifting effect the magnitude of the phase shift is different and

periodically changing for all frequencies. This functionality gives a frequency

sweep type of an effect, although in this context it can be called a phase sweep.

Figure 6.82 also shows the most common modulation alternatives for the phase-

shifted signal. The user of a phase shifter effect can typically control the rate of

the periodic phase sweep, the magnitude ratio of the original and phase-shifted

signals and the waveform (sine, triangle, square, etc.) used to periodically mod-

ulate the phase sweep.

The MXR Phase 45 guitar effect schematic is presented in Figure 6.83. Most

likely this schematic has been originally leaked to the public domain by someone

who has directly traced out the circuit board of the original device. One could

easily assume that the number related to each phaser model manufactured under

the brand of MXR refers to the amount of phase shift the device produces. The

following analysis will reveal whether this assumption is correct or false.
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Figure 6.83: Phase 45 effect pedal schematic drawn with gschem

As a brief overview of the circuit, the input signal goes first through a buffering

amplifier XOP1 and is then split into two different paths at node 8. One path goes

to the output stage through a filter section formed by two op-amps (XOP2, XOP3)

and the other path leads directly to the output stage. The separated signals are

added back together via resistors R16 and R17, which in this case mix the signals

with even balance (10/10). The output signal is taken from node 20, right after

the DC blocking capacitor C11.

The signal going through the phase-shifting stage is affected by a constantly

changing amount of phase shift for each frequency component. This alternating

phase shift is accomplished by varying the filter section resistance by dynamically

modulating the gate-to-source voltage of the JFETs J1 and J2 near the pinch-off

voltage – just like in the tremolo effect. The modulating signal comes from a

basic oscillator circuit, which can be identified as a textbook example of a relax-

ation oscillator. The properties of the relaxation oscillator will be covered as a
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side effect in section 6.9.1.

The phase shift network is connected to a virtual ground reference voltage, which

is mainly generated by the zener diode D1. This zener diode is used for setting

the magnitude of the virtual ground to about half the value of the operating

voltage, which is the typical 9 volt battery. The DC voltage level of the modulating

signal at the gate of the JFETs is biased by a trimmer potentiometer R18. This

biasing should be so that if the virtual ground is at 4.5 V and the pinch-off voltage

VP of the JFETs is −1.8 V, potentiometer R18 should be trimmed to give a DC

voltage of approximately 4.5 V − 1.8 V = 2.7 V to the gate of the JFETs. The

signal from the oscillator stage will oscillate around the pinch-off voltage, thereby

modifying the drain-to-source resistance of the JFETs.

The design requires that the two op-amp filters behave identically to give exactly

the same phase shift at all times. Therefore, the components used to construct

the filters should have as similar values as possible. The most critical components

are the JFETs because of the large variation in their pinch-off voltages. The JFETs

used in the circuit need to be manually measured to have similar values of pinch-

off voltage VP and saturation current IDSS to unleash all the power that this

Phase 45 effect pedal has to offer.

6.9.1 Side effect: the relaxation oscillator

The schematic of the Phase 45 effect contains two interesting examples of using

the operational amplifier. Firstly the op-amp is used for creating low-frequency

oscillations as an relaxation oscillator, and secondly it can be used for realising a

huge assortment of different kinds of filter transfer functions.

To concentrate first on the oscillator implementation, the oscillator solution used

in the Phase 45 effect is isolated from the main schematics. Figure 6.84 presents a

theoretical textbook example and the Phase 45 modified version of the relaxation

oscillator circuit side by side. These kind of oscillators are relatively difficult to

analyse because their functionality is based on the transient behaviour of the ca-

pacitor charging and discharging process. Therefore, it is not possible to directly

calculate a transfer function of the circuit that would describe all the oscillatory

properties.

The operational amplifier in the relaxation oscillator configuration is wired as a

Schmitt trigger. In this setup a threshold voltage level is set to the positive input,

and as the negative input crosses this threshold voltage, the output saturates
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Figure 6.84: Relaxation oscillators

immediately to full operating voltage. Rising edge cross of negative input voltage

over the threshold causes the output to swing to negative saturation and vice

versa. This happens because of the feedback to the positive input together with

the huge open-loop gain of the operational amplifier.

The simplest way to analyse this basic circuit is to assume that the output voltage

of the circuit is a clean square wave signal. This square wave feeds the capacitor

C through R, and depending on the state (V+ or V−) of the output voltage Vout,

the capacitor is either charging or discharging with some time constant RC. The

transient function of capacitor charging needs to be calculated to find out how

long it takes to reach the switching levels that change the output from positive

saturation to negative saturation and back to positive again. This time constant

controlled process produces the square wave output oscillation of a certain fre-

quency frlx.

Vout RD

R

CI1 I2

Figure 6.85: A simple relaxation oscillator RC network without an op-amp

Figure 6.85 shows the initial setup for the analysis. The precondition for the

analysis is that the voltage source Vout gives a steady DC voltage of V+ and that the

capacitor C is fully discharged. Resistor RD models the voltage divider section
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presented in Figure 6.84a. Previously the nodal analysis method was used to

produce the matrix equations of circuits, but in this case it is not very suitable

because there is no series resistance to convert the voltage source to a current

source. It is about time to introduce the power of mesh analysis. For mesh

currents I1 and I2 of Figure 6.85, one can write







RD −RD

−RD RD +R +
1

sC






×






I1

I2




 =






Vout

s

0




 .

The voltage vc over the capacitor is I2ZC , where ZC is the impedance of the

capacitor. After solving the previous matrix equation

I2(s) =
Vout

R

1

s+
1

RC

,

and voltage over the capacitor as a function of the Laplace variable s is

vc(s) = I2(s)
1

sC
=

Vout

RC

1

s

(

s+
1

RC

) . (6.85)

Next the method of partial fractions is used to modify the expression to a suitable

form for making the inverse Laplace transform. According to the directives of

partial fractions,
Vout

RC

1

s

(

s+
1

RC

) =
A

s
+

B

s+
1

RC

,

and multiplication by s

(

s+
1

RC

)

yields

Vout

RC
= A

(

s+
1

RC

)

+ Bs. (6.86)

From (6.86) a pair of equations can be formed to solve values for the multipliers

A and B. Equating similar powers of s gives

As+Bs = 0s ⇒ A = −B (6.87)

A

RC
+ 0B =

Vout

RC
⇒ A = Vout. (6.88)

Now the parameters A and B are defined and equation (6.85) becomes

vc(s) =
Vout

s
− Vout

s+
1

RC

. (6.89)
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The inverse Laplace transform for equation (6.89) is easily obtained from tabu-

lated standard formulae given in Appendix E. The voltage vc in the time domain

can now be expressed as

vc(t) = Vout

(

1− e−
t

RC

)

. (6.90)

This model describes only the situation where the initially fully discharged ca-

pacitor is charged from a constant voltage Vout to full charge via the RC feedback

network. It is to be noted that this charging process does not depend on the resis-

tance RD of the voltage divider network used for creating the threshold voltage

levels for output voltage switching.

Taking into account the charging thresholds provided by the voltage divider R1

and R2 of Figure 6.84a, the voltage vi between the positive and negative inputs

of the op-amp is

vi = vc −
R1

R1 +R2

Vout.

In this case the initial charge in the capacitor has a voltage
R1

R1 +R2

Vout and

vc(t) = Vout

[

1−
(

1 +
R1

R1 +R2

)

e−
t

RC

]

. (6.91)

From here it is possible to solve the oscillation period T , using the fact that when

t = T/2, the voltage measured over the capacitor reaches the higher threshold

voltage. Then from (6.91),

R1

R1 +R2

Vout = Vout

[

1−
(

1 +
R1

R1 +R2

)

e−
T

2RC

]

. (6.92)

Solving this equation for T leads to the time for the oscillating period

T = 2RC ln

(

1 +
2R1

R2

)

. (6.93)

This applies only to the case where the supply voltages of the op-amp are ±VS.

More generally, equation (6.92) can be written as

VlimH = Vout − (Vout − VlimL)e
− T

2RC , (6.94)

which gives for the period of oscillation

T = 2RC ln







1− VlimL

Vout

1− VlimH

Vout







. (6.95)
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Figure 6.86: The modified relaxation oscillator RC network without an op-amp

Moving on to analyse the modified version of the relaxation oscillator. The equiv-

alent network for mesh analysis is given in Figure 6.86. The voltage divider resis-

tances have been left out from this model because in the previous analysis they

were noted to have no effect on the final result. Writing out the equations for the

mesh currents gives the matrix equation







R +
1

sC
−R

−R R +Rx +
1

sCx






×






I1

I2




 =






Vout

s

0




 .

In the Phase 45 circuit the output is taken on top of C but the input for the op-

amp comes on top of Rx. The preference is to analyse the voltage at C. One way

to get an expression for the voltage over C is to calculate the current flowing

through R, and then vc = Vout − (I1 − I2)R. From the matrix equation

I1(s) =

Vout

s

(

R +Rx +
1

sCx

)

R

(

Rx +
1

sCx

)

+
1

sC

(

R +Rx +
1

sCx

) (6.96)

I2(s) =

Vout

s
R

R

(

Rx +
1

sCx

)

+
1

sC

(

R +Rx +
1

sCx

) . (6.97)

After taking the difference I1 − I2 and simplifying, the current through R can be
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written as

IR(s) = I1(s)− I2(s) =

Vout

R

(

s+
1

RxCx

)

s2 +

(
1

RC
+

1

RxCx

+
1

RxC

)

s+
1

RCRxCx

. (6.98)

Usually the procedure of the inverse Laplace transform is to try to square the

denominator by adding and subtracting the needed terms, but in this case it is

not a proper method. The rough method is to use the quadratic formula to find

the roots of the denominator and to use those roots to write the denominator as

a product of two terms. In this case, this method gives the roots

s1,2 =

(
1

2RC
+

1

2RxCx

+
1

2RxC

)

±

√
(

1

2RC
+

1

2RxCx

+
1

2RxC

)2

− 1

RCRxCx

.

Clearly a substitution is needed to avoid excessively long equations. In the fol-

lowing formulations the terms of roots s1 and s2 are addressed as

b =
1

2RC
+

1

2RxCx

+
1

2RxC
and c =

1

RCRxCx

.

With these substitutions, equation (6.98) can be written as

IR(s) =

Vout

R

(

s+
1

RxCx

)

(
s+ b+

√
b2 − c

) (
s+ b−

√
b2 − c

) . (6.99)

A similar approach as used previously is adopted here to try and modify the

equation into a form where one can apply the inverse Laplace transform directly

from tables. A partial fraction expansion of equation (6.99) starts with

Vout

R

(

s+
1

RxCx

)

(
s+ b+

√
b2 − c

) (
s+ b−

√
b2 − c

) =
A

s+ b+
√
b2 − c

+
B

s+ b−
√
b2 − c

,

and this gives a pair of equations,

A+ B =
Vout

R
(6.100)

A
(

b−
√
b2 − c

)

+B
(

b+
√
b2 − c

)

=
Vout

RRxCx

, (6.101)

which give the factors A and B the values

B =
Vout

R

1

2
√
b2 − c

[
1

RxCx

−
(

b−
√
b2 − c

)]

(6.102)

A =
Vout

R

(

1− 1

2
√
b2 − c

[
1

RxCx

−
(

b−
√
b2 − c

)])

. (6.103)
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Finally, the solution for the time dependent voltage at the capacitor is

vc(t) = Vout − (Vout − VlimL)
(
Ae−τAt + Be−τBt

)
, (6.104)

where τA and τB are those very complicated expressions involving a mixture of

time constants due to R,C,Rx and Cx.

Things got rather complicated again after adding two components to the original

circuit. So why have Rx and Cx been added to the circuit in the first place? The

author’s guess is that those are there to prevent hysteresis, because basic Schmitt

triggers are known to suffer from hysteresis at the transition region. It is possible

to get a hysteresis problem especially with low-frequency changes around the

trigger point . The trick with the extra capacitor Cx is to use it with a considerably

faster time constant so that the extra charge in capacitor Cx triggers the change

and empties out fast to prevent the hysteresis effect. The original large-valued

capacitor never reaches over the triggering limits thanks to this extra trigger

capacitor. Additionally, capacitor Cx might slightly increase the rise times of the

output square wave.

The next step is to show that the oscillation times for the modified circuit can still

be calculated using the formula of the traditional relaxation oscillator. Because

the product RxCx is so much smaller than the product RC, the term previously

assigned as b can be approximated with

b =
1

2RC
+

1

2RxCx

+
1

2RxC
≈ 1

2RxCx

,

and with this approximation the roots s1 and s2 can be written as

s1,2 = − 1

2RxCx

(

1±
√

1− 4RxCx

RC

)

.

Here the square root can be expanded as a binomial approximation containing

the first two terms of the binomial series

√

1− 4RxCx

RC
≈ 1− 2RxCx

RC
,

so that the roots s1 and s2 become

s1 = − 1

RxCx

+
1

RC
≈ − 1

RxCx

(6.105)

s2 = − 1

RC
. (6.106)
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With these roots the partial fraction expansion finally leads to expression

IR(s) =
A

s+
1

RC

+
B

s+
1

RxCx

,

where B = 0 and A =
Vout

R
. Now the voltage over the capacitor C can be written

vc(t) = Vout −RIR(t) = Vout

(

1− e−
t

RC

)

. (6.107)

The final formula for the voltage of the capacitor C is eventually approximated to

be the same as for the textbook version of the relaxation oscillator. Hence, when

choosing the component values for R and C in this modified oscillator, the de-

sign can be made using the familiar formulae already derived for the traditional

relaxation oscillator.

6.9.2 Side effect: an op-amp all-pass filter

Operational amplifiers can be used to construct a variety of filter functions, where

the so-called biquad filters are the most commonly used. Biquad filters can be

used for realising second order filter functions. There exist simple operational

amplifier realisations also for simpler first order filter functions. The filter used

in the Phase 45 effect is an all-pass filter, which only modifies the phase of the

signal. There are a few ways to analyse the transfer function of this all-pass filter.

R1

R2

Vin

Vout

C
R

Figure 6.87: A simple all-pass filter realisation using an operational amplifier

One way relies on the very basic Kirchhoff’s current law. The second method is

again the more general nodal analysis method, but with slight modifications due

to the fact that the input terminals of the ideal operational amplifier are assumed

to have the same voltage at all times. In this simple case, let’s analyse the all-

pass filter circuit using Kirchhoff’s current law. The introduction to the systematic

and more general matrix-based nodal analysis of operational amplifier circuits is

presented later.
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Based on the statement that the sum of currents leaving a node is zero, the

following equations can be written from the schematic of Figure 6.87:

V− − Vin

R1

+
V− − Vout

R2

= 0 (6.108)

(V+ − Vin) sC +
V+

R
= 0, (6.109)

where the voltages V− and V+ are the voltages at the input terminals − and +

of the operational amplifier. Because V+ = V−, it is reasonable to solve V− from

equation (6.108) and V+ from equation (6.109)

V− =
VinR2 + VoutR1

R1 +R2

V+ =
VinsRC

1 + sRC
,

and assign these expressions as equal. After simplifying the expressions,

VinR2 + VoutR1

R1 +R2

=
VinsRC

1 + sRC
. (6.110)

To reach the transfer function, the ratio of
Vout

Vin

must be solved. Equation (6.110)

reveals that the ratio

Vout

Vin

= −

R2

R1

− sRC

1 + sRC
. (6.111)

This was reasonably easy to evaluate, but when the circuits have more compo-

nents, it eventually becomes impossible to use this basic method to evaluate the

transfer functions in symbolic form. For that purpose, it is necessary to investi-

gate how the ideal op-amp circuits are analysed using the systematic method of

nodal matrix equations.

6.9.3 Side effect: the op-amp in the nodal matrix method

Unfortunately the extremely useful nodal matrix analysis does not work directly

with circuits using ideal op-amps. This is due to equal voltages at the input

terminals of the operational amplifier. However, with a few additional steps it is

possible to analyse op-amp circuits efficiently using the nodal matrix method of

analysis.

As an example, the op-amp filter of section 6.9.2 is reanalysed. Firstly it is re-

drawn to Figure 6.88, so that the voltage source is transformed as a current

source as is required for the nodal analysis. From this figure the following matrix
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R1
Vin

R1

R2

3

2

1

CsCVin R

Figure 6.88: The op-amp filter circuit ready for nodal analysis

equation can be deduced:












1

R1

+
1

R2

0 − 1

R2

0
1

R
+ sC 0

− 1

R2

0
1

R2












×











V1

V2

V3











=











Vin

R1

sCVin

I0











.

This matrix needs to be reduced a little to yield direct results. Because in the

ideal op-amp V1 = V2, all the terms in column 1 can be added to column 2 and

after this the whole column 1 can be thrown away from the matrix. This column

deletion leaves one row too many to the matrix. Row 3 is connected to the output

where we have put just some undeterministic output current I0. This current can

be evaluated later when the voltages V1 and V2 have been solved. So out goes

row 3. The reduced matrix is now







1

R1

+
1

R2

− 1

R2

1

R
+ sC 0






×






V2

V3




 =






Vin

R1

sCVin




 .

The output voltage is marked as node 3 in Figure 6.88, so that is what is going

to be solved:

V3 =

VinsC

R1

+
VinsC

R2

− Vin

R1

1

R
− VinsC

R1(
1

R
+ sC

)
1

R2

.

After dividing Vin to the left side of the equation and some amount of simplifica-
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tions, the result is obtained as

V3

Vin

=
Vout

Vin

= −

R2

R1

− sRC

1 + sRC
, (6.112)

which is the same result as in equation (6.111). Section 9.1 gives more examples

on the use of the operational amplifier nodal analysis in matrix form.

With reference to Figure 6.89, the general rules for applying the nodal method

of analysis in circuits containing ideal operational amplifiers are as follows:

1. Write the complete admittance matrix equation of the analysed circuit

2. Remove equation (row) related to node C

3. If node A(B) is connected to ground, remove column B(A). Otherwise add

column B(A) to column A(B) and remove column B(A)

A

B

C

Network IC

Figure 6.89: The ideal operational amplifier in the nodal method of analysis

6.9.4 The DC analysis of the Phase 45 effect

The DC analysis can be carried out in this case without any detailed calculations,

since the analysis can mostly rely on the low current properties of the JFETs and

the operational amplifiers. The first thing to distinguish is the virtual ground set

by a 4.7 V zener diode. From there it is possible to figure out that the JFET drain-

to-source voltage VDS = 0 because no current is flowing to the op-amp inputs.

Since there is practically no current going through the two 10 kΩ resistors, many

of the locations inside the filter constructions have the same DC voltage in the

static configuration.

With reference to the circuit diagram of Figure 6.83, the capacitors C5 and C8

are open circuits at constant voltages, and therefore the DC voltage to the JFET

gates is taken through a voltage divider system formed by R18, R19 and R20.
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The relaxation oscillator is like a separate unit in this circuit, and because it will

be constantly oscillating, it is not analysed for DC voltages.

6.9.5 The AC analysis of the Phase 45 effect

The Phase 45 circuit of Figure 6.83 has two all-pass filters connected in series.

How does that change the transfer function from equation (6.111)? The all-

pass filters are the actuators for the phase shift, so the AC analysis will focus on

investigating the behaviour of these filters. The circuit to be analysed in this case

is depicted in Figure 6.90.

R1
Vin

R1

R2

3

2

1

CsCVin R

Cx

5

Rx

R3 R4
4

6

Figure 6.90: The all-pass filter section of the Phase 45 circuit

The nodal analysis of this circuit proceeds similarly as shown in section 6.9.3.

To save one intermediate step, the matrix representation (6.113) of this circuit is

directly written in the reduced form with two rows and columns removed.

















1

R1

+
1

R2

− 1

R2

0 0

1

R
+ sC 0 0 0

0 − 1

R3

1

R3

+
1

R4

− 1

R4

0 −sCx
1

Rx

+ sCx 0

















×















V2

V3

V5

V6















=
















Vin

R1

sCVin

0

0
















. (6.113)

After solving V6 from the previous matrix equation using Cramer’s rule, the trans-

fer function of the circuit presented in Figure 6.90 is

V6

Vin

=

(
R2

R1

− sRC

)(
R4

R3

− sRxCx

)

(1 + sRC) (1 + sRxCx)
. (6.114)
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If one chooses to have R1 = R3, R2 = R4, R = Rx and C = Cx, then

V6

Vin

=

(
R2

R1

− sRC

)2

(1 + sRC)2
. (6.115)

For ideal op-amps this transfer function gives a unity gain for all frequencies,

but the phase shift depends on the frequency of the input signal. The phase

shift variation of this two-stage all-pass filter is from 0 to 180 degrees because

both capacitors will give a maximum of a 90 degree shift. The total phase shift

reaches the maximum 180 degrees at frequency

fp =
1

2πRC
. (6.116)

The input signal of the Phase 45 circuit is combined to the phase-shifted signal via

10 kΩ resistors, which generate a direct sum with equal weights. The frequency

response curve of this summed signal will then have one ’notch’ at frequency fp.

Since the filters are designed to be adjustable via equal resistors R, the frequency

fp of the notch will change as a function of R. The location of the notch in the

frequency domain is depicted in Figure 6.91 for a few selected resistance values

of R, while the other components are fixed to have the same values as in the

phaser circuit 6.83.
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Figure 6.91: The frequency response after summing the input and filtered signals

In this context it should be mentioned that the buffer amplifier XOP1 in front
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of the filter stage in the schematic 6.83 is essential to produce evenly balanced

notches for all frequencies in the range of operation frequencies. Without the

buffer amplifier, the internal impedance of the signal source (guitar pickup +

tone control in this case) would have a considerable effect on the frequency

response of the sum of signals. The buffering amplifier can be taken away only in

the case where the internal impedance of the signal source is 1 for all frequencies,

but this is not very realistic for any practical signal source.

Figure 6.92 shows the resistance part of the all-pass filter of the Phase 45 circuit.

A proof should be given that the effective resistance acting as R in the all-pass

filter is equal to the parallel resistance of JFET internal drain resistance RD and

the series connection of R1 and R2. The capacitor Cx added in the middle of this

resistance assembly affects extremely little or not at all the total impedance of

the setup.

R1

R2

Cx

(a) Resistance assembly with a JFET

R1

R2

Cx

µvGS

RD

vGS

ZGS

ZGD

(b) Small-signal resistance model

Figure 6.92: The variable resistance circuit extracted from the all-pass filter

From the viewpoint of R1 and R2, Cx is in series with the internal impedances

(resistance + capacitance) ZGS and ZDS of the JFET. Impedances ZGS and ZDS

are tremendously huge at audio frequencies, which means that the parallel con-

nections of R1 or R2 with Cx + Zin have the effective values of R1 and R2. Since

the JFET practically does not draw any current, the current through Cx is min-

imal at all frequencies. From there it follows that the voltage drop across Cx is

also minimal at all frequencies. Therefore, Cx does not filter out any input signal

frequencies and it does not affect the total series impedance of R1 +R2.

Since the op-amp in the all-pass filter assembly does not draw any current either,

the current through the JFET’s drain-source channel is extremely small. This

limited current keeps vDS close to zero at all times and enables the possibility to

use the JFET as a voltage-controlled resistance.
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But what exactly is the purpose of having the capacitor Cx there in the middle of

everything? Apparently it is used for transporting part of the alternating voltage

to modulate the JFET at the rate that the signal source voltage is varying. This

arrangement tries to stabilise the resistance value of the JFET during the low-

frequency modulation. One might think it is a clever solution, but it seems to

be more like a hack. If the low-frequency modulation was allowed to have a

larger peak-to-peak voltage at the gate of the JFET, the resistance would surely

change between the lower and upper limits and the phase sweep would extend

to a wider range of frequencies. As the resistance of the JFET goes low, the notch

in the frequency response will increase to several kilohertz.

As a conclusion to the resistance discussion, the total resistance of the impedance

assembly in Figure 6.92 is effectively having the JFET resistance in parallel with

the series-connected R1 and R2. The resistance values used for calculating the

locations of the notches in Figure 6.91 have been chosen to imitate the limits of

the total resistance R. When vGS at the JFET gate is at the pinch-off voltage, the

resistance RD is very high and the total resistance R = R1 + R2, which is 20 kΩ

according to Figure 6.83. When vGS changes a few hundred millivolts towards

the source voltage, the resistance of the JFET drops dramatically to about 1 kΩ,

as shown by the theoretical analysis in Figure 6.45. The limit of having 200Ω

as the total resistance is just a theoretical minimum and it only illustrates the

maximum range where the notch can move. When considering the voltage levels

obtained from the relaxation oscillator through the 3.9 MΩ resistor to the gate of

the JFET, the total resistance R of the all-pass filters change between 20 kΩ and

2 kΩ. This means that the notch in the frequency response will sweep through

an approximate range from 200 Hz to 2000 Hz.

If the name of the Phase 45 effect is not completely misleading, one would as-

sume the number 45 to mean the relative phase shift obtained using the oscillator-

controlled variable resistance. Figure 6.93 shows the effect of changing the resis-

tance value within the range of 1− 10 kΩ. Obviously a constant 45 degree phase

shift is not achievable only by changing the value of R. The phase shift is clearly

smaller at very low and very high frequencies than it is at the centre frequencies.

It would be relatively simple to extend the Phase 45 to a Phase 90 circuit by

adding a second double all-pass filter section at the end of the filter section of
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Figure 6.93: Phase shift curves of the Phase 45 effect with different values of R

the Phase 45 circuit. In that case, the transfer function would be

Vout

Vin

=

(
R2

R1

− sRC

)4

(1 + sRC)4
, (6.117)

and the maximum phase shift from the capacitors would reach 360 degrees. In

this shifting range the critical 180 degree shift is encountered twice so that there

will be two notch points in the frequency response curve at locations

fp1 = fp −
fp
2

fp2 = fp +
fp
2
,

where fp is given by equation (6.116). The phase diagram is presented for con-

venience in Figure 6.94.

6.9.6 A SPICE model for the Phase 45 circuit

The circuit diagram of the Phase 45 effect drawn with the gschem schematic ed-

itor was already presented in Figure 6.83. This is the first time in this chapter

when operational amplifiers are encountered in the circuit diagram. Unfortu-

nately op-amps create some small problems for SPICE simulations. Although all

schematic editors typically contain an op-amp circuit element, the op-amp does

not have any built-in model description in SPICE. Therefore, the op-amps are

labelled in the schematic as XOP, where the prefix X indicates to SPICE that the

component model is given as a sub-circuit block in the netlist file.
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Figure 6.94: A phase shift curve of the Phase 90 effect

The simplest sub-circuit model for the op-amp is the ideal model, where the

inputs do not draw any current and the voltage gain is controlled by the voltage

between the input pins. This model is depicted in Figure 6.95. The SPICE sub-

1

2

3

1

2

E · Vin

3+

−

Vin

Figure 6.95: An ideal operational amplifier equivalent circuit

circuit macro model for this ideal op-amp circuit is

* IDEAL OPAMP MACRO MODEL

* connections: non-inverting input

* | inverting input

* | | output

* | | |

.SUBCKT OPAMP1 1 2 3

*

Iopen1 1 0 0A

Iopen2 2 0 0A

EGAIN 3 0 1 2 1000K

.ENDS

If a component in the circuit diagram is labelled as XOP1, the call to the sub-circuit
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in the netlist file is done with the line XOP1 0 2 3 OPAMP1, where the tag OPAMP1

defines the specific sub-circuit model to use. The netlist lines starting with letter

’E’ (EGAIN in this case) define a voltage-controlled voltage source component in

SPICE. The description of this controlled source requires to define four indices:

the first two are to define the output nodes and the following two indices define

the input nodes. The output voltage depends on the voltage difference at the

input nodes, which is amplified by the factor given after the pin connections. In

this example, the gain factor is 1000000, which is an approximation of the huge

open-loop gain of a typical operational amplifier.

Another similar model that takes into account the theoretical input and output

resistances of the op-amp is presented in Figure 6.96. For this op-amp equivalent

1

2

4

1

2

E · Vin

3
+

−

VinRin

Rout

4

Figure 6.96: An op-amp equivalent circuit with input and output resistances

circuit, the corresponding SPICE sub-circuit model is written as

* OPAMP MACRO MODEL

* connections: non-inverting input

* | inverting input

* | | output

* | | |

.SUBCKT OPAMP1 1 2 4

*

RIN 1 2 10000k

EGAIN 3 0 1 2 100K

ROUT 3 4 100

.ENDS

These two models are sufficient enough for simulating audio frequency oscilla-

tions with limited gains. Problems occur, for example, if the op-amp is used as

an oscillator where the output voltage swings between the operating voltages.

The models presented in Figures 6.96 and 6.95 have nothing to limit the output

voltage to the operating voltages. Instead, the output voltage of this model can

swing to infinity as the ideal model of an op-amp suggests.

Luckily component manufactures have provided tailor-made SPICE sub-circuit

models for several types of components, including op-amps. Therefore, it is bet-
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ter to just use what has been provided and not start re-inventing the wheel, or

the op-amp in this case.

Usually the sub-circuit models are stored as library (.lib) files which have a huge

amount of different sub-circuit definitions. It is relatively simple into include

these libraries directly to the SPICE netlist file and use the models as they would

be written in the actual netlist file. The inclusion of a library file into a SPICE

netlist is done with the .include command. For example, the command

.include /usr/share/gEDA/models/spice/tex_inst.lib

would include all the sub-circuits from a Texas Instruments library file into the

netlist. The .include command is normally written to the beginning of a netlist

file before the simulation control commands.

The models provided by the manufacturers allow realistic simulations and limit

the output voltage so that it will not exceed the operating voltages. The op-amp

model provided by Texas Instruments is used in the simulations of the Phase 45

circuit. It might not be easy to find sub-circuit models defined by the component

manufacturers because normally the SPICE simulation software packages are not

available for free, unlike gEDA and ngspice. Only a few essential libraries can be

found from the Internet as ’open source’ deliveries.

With the gEDA design tools collection in Linux, the SPICE specific netlist file can

be created from the schematic of Figure 6.83 by using the command

gnetlist -g spice-sdb -o phaser45_net.net phaser45.sch

where the output file named as phaser45_net.net is created from the schematic

file phaser45.sch. The somewhat lengthy but yet complete netlist file of the

Phase 45 circuit ready for a simulation run is included in Appendix B.

When simulating circuits containing operational amplifiers, the transient analysis

of the op-amp output voltage is the most interesting one, so at least that should

be included in the control section of the netlist file. The obvious simulation stores

the waveforms of the input and output signals to see how the signal changes

inside the Phase 45 circuit.

.control

tran 10us 990ms 810ms

set filetype=ascii

write phasdata.txt tran1.v(3) tran1.v(20)

gnuplot phas_tran tran1.v(3) tran1.v(20)

.endc
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Additional analysis could include the AC analysis, but there it should be noted

that the analysis is executed using initial values where the JFET is fully closed.

This will give the notch close to 200 Hz. A suitable initial voltage should be set

to VGS to obtain the frequency response when the JFET is partially open.

6.9.7 Results of simulations, calculations and measurements

The prototype of the Phase 45 circuit shown in Figure 6.83 was built on a solder-

less breadboard using LM224J to replace the two TL071 op-amp components of

the original schematic and BF245A JFETs to replace the 2N5457 JFETs. To save

extra costs, some resistor values were approximated to use some resistors that

were already used in previous projects. These approximations and their effects

are explained later in this section.

The netlist prepared for SPICE simulations from circuit 6.83 was loaded into

ngspice and analysed with the operating point (.OP) command to obtain the

DC values to be compared with the measured values. The calculations based

on theoretically derived equations were not done for this circuit, because the

static configuration of the circuit is explained in section 6.9.4. The data of the

simulated and measured DC values is gathered to Table 6.6 where it can be easily

compared for differences.

The measured and simulated DC values differ significantly in absolute value be-

cause the virtual ground was measured to be unexpectedly low in the prototype.

The values are a bit more equal if the results are compared relative to the virtual

ground level. The value 4.67 V is repeated many times in the simulated results,

and it can be taken as the virtual ground voltage for the circuit, about half of

the full operating voltage. The corresponding virtual ground for the prototype

circuit seems to be 3.86 V. Possibly the zener diode had some deviation from the

nominal value, which might have caused the observed difference in the virtual

ground voltage between the real world prototype and the ideal simulated model.

The high input impedance of the JFETs and the op-amps might also cause the

deviation.

In the transient simulations, the first thing to verify is that the phase shift ob-

tained from the all-pass filter at some specified frequency of the input signal

agrees with the calculated shift curves of Figure 6.93. The input signal was cho-

sen to be a 100 Hz sine wave (close to the open G-string in a bass guitar), because

with this frequency the visualisation of the effect is relatively simple. Figure 6.97
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Table 6.6: Phase 45 circuit DC values

value simulated calculated measured

VD0 4.67 - 3.86

VG1 2.87 - 2.15

VD1 4.67 - 3.86

VS1 4.67 - 3.80

VG2 2.87 - 2.82

VD2 4.67 - 3.86

VS2 4.67 - 3.80

V10 4.67 - 3.82

V21 2.87 - 1.14

V5 4.67 - 2.60

V7 4.67 - 3.86

V8 4.67 - 3.86

V12 4.67 - 3.86

shows the phase shift of the Phase 45 circuit in the situation where the resistance

of the JFETs change from maximum resistance to lower resistance. In this case

the total resistance R in the filter sections is about 20 kΩ at the beginning and it

changes roughly to 1 kΩ towards the end.

The theoretical phase shifts predicted by Figure 6.93 are approximately −120

degrees for the 20 kΩ resistance and it approaches zero degrees with lower values

of the resistance. These phase shift predictions are in good agreement with the

simulated results in Figure 6.97, where the dashed curve presents the voltage

measured from node 18, which is identified in Figure 6.83. In this perspective

the theoretical transfer functions derived in section 6.9.5 are valid.

The results of the time domain transient simulation in Figure 6.98 show the

phase shift of the output signal at node 20 against the input signal. This situation

is a little bit different compared to Figure 6.97, since the output signal is a sum

of the input signal with the phase-shifted signal measured from node 18.

The simulation results indicate that the sum of the input signal with the phase-

shifted signal will in general attenuate the actual output signal by some amount

depending on the phase shift obtained in each frequency. The relative phase shift
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Figure 6.97: The input vs. the phase-shifted signal of the Phase 45 circuit
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Figure 6.98: The input signal vs. the output signal of the Phase 45 circuit

of the output signal as the JFET resistance moves from maximum resistance to

lower resistance should be equal to the relative phase shift indicated by Figure

6.93. In this case it should be about −110 degrees. This verifies at least the fact

that the name ’Phase 45’ does not refer to a 45 degree phase shift, since the phase

shift obtained from the circuit varies for each frequency and in general is more
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than 45 degrees.

In the prototype measurements, a computer sound card was used as a signal

source, from where a 100 Hz sine wave was played out. This frequency was cho-

sen because it is the same test signal as in the simulations. The input and output

signals were measured with a digital oscilloscope. Two separate measurements

were made, where in the first measurement the output waveform had a maxi-

mum negative shift to the left side of the input signal, and the second output

waveform had a maximum positive shift to the right. The results are plotted in

Figure 6.99. From Figure 6.99 it is evident that the circuit actually works as
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Figure 6.99: Measured input and output voltage waveforms of the Phase 45 effect

expected and the functionality is also similar to the simulations. Although the

visualisation is in a little bit different form, this plot from the measurements can

be compared to Figure 6.98 to see that the output signal moves with the same

shift as in the simulations. Roughly it does work the same way. The main thing,

however, is that the effect sounded good; all the fancy curves are secondary in

contrast to the actual tones obtained from the effect.

Considering the prototype circuit as a moving notch filter, the low-frequency

limit was determined by scanning a frequency where the maximum negative

phase shift to the left completely attenuated the signal to zero amplitude. This

frequency was measured to be about 200 Hz. The maximum positive phase shift

to the right completely attenuated the signal at about 2000 Hz, indicating the
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high-frequency limit of the notch filter. The theory predicts limits of 160 Hz

and 2200 Hz, so the prototype measured close to the theoretical values and was

therefore working as expected.

To draw a better picture from the measurements while still retaining compa-

rability to Figure 6.98, the overview on the input and output curves in Figure

6.100 shows that although the phase shift seems to be similar to the simulated

reference, the output signal does not change its amplitude as much as in the sim-

ulations. This indicates that the phase shift is not reaching the full theoretical

range in the prototype circuit.
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Figure 6.100: A measurement on the general output signal waveform

This lag of efficiency leads to a discussion about the JFETs. For the Phase 45

circuit to give maximum shifting properties, the JFETs should be handpicked to

be a matched pair. This means that the drain current IDSS at zero gate voltage

and the pinch-off voltage VP should be as close to equal as possible in the filter

section of the Phase 45 circuit. To truly get matched FETs, it is necessary to

measure IDSS with a few different operating voltages (VDD) and pick the best

matches from a group of measurements. To determine VP it would be good to

measure VGS with several different resistors to get a set of points. To this set of

measured VGS values, one should fit the parabola in the form of equation (6.36),

because the measurements are made in the saturation region. The essential thing

is that the matching is done with respect to several values. Matching to one
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measured value, as suggested by Keen [87], usually works fine but does not yet

guarantee a fool proof match.

It is also essential to cover the signal connection between the voltage at the relax-

ation oscillator and the gate-to-source voltage of the JFETs. For starters, Figure

6.100 depicts the measured voltage waveforms from the input and output of the

oscillator. At the oscillator output, the voltage waveform is a square wave with a
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Figure 6.101: Measured oscillator input and output waveforms

peak-to-peak value close to the operating voltage of the op-amp. It depends on

the op-amp type as to how close to the ’rails’ the output voltage can swing.

The input voltage of the oscillator shows how the capacitor C9 sequentially

charges up and then discharges. This triangular voltage at the node 23 is fed

through the voltage divider formed by the 3.9 MΩ and 1 MΩ resistors. The ca-

pacitor C6 at the voltage divider filters out the highest frequencies, so the voltage

eventually going trough the 470 kΩ resistors to the gate of the JFETs looks almost

like a sine wave with a relatively small peak-to-peak voltage of about 200 mV in

this specific measurement.

The use of the trimmer potentiometer R18 seems an awkward way to adjust the

reference voltage to the hot spot where the effect starts working. This poten-

tiometer sets the DC voltage on top of which the 200 mV signal from the oscil-

lator is swinging. As the pinch-off voltage of the BF245A was measured to be
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approximately −1.7 V, the voltage at the gate of the JFETs should swing from

−1.7 V to −1.5 V, assuming the 200 mV alternating control voltage from the os-

cillator. With these specifications as a reference to Figure 6.45, the resistance of

the JFETs would change from ∞ to about 2 kΩ (theoretically). Figure 6.102 de-

picts the measured voltage at the JFET gate as the potentiometer R18 is adjusted

to its minimum and maximum values. Somewhere between these limiting values

a certain DC voltage is found that makes the circuit rock.
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Figure 6.102: Potentiometer-adjusted voltage levels at the JFET gate

The voltage difference between the maximum DC voltage in Figure 6.102 (which

should equal the virtual ground level), and the voltage with which the effect

works, should approximately equal the pinch-off voltage of the used JFETs.

Because the maximum range of DC voltage values in the scope of potentiometer

R18 is only 3.8 V − 1.0 V = 2.8 V, it is clear that the BF245B JFET with the

measured VP of −3.6 V would have not worked in this circuit. To be able to

use JFETs with higher pinch-off voltages in this Phase 45 circuit, the zener diode

should have a bigger value. For example, a 5.6 V zener could be used to give a

wider range of DC voltage adjustability via R18.

The relaxation oscillator was studied as a separate circuit because a lot of effort

was wasted in deriving all those theoretical formulae in section 6.9.1. It is inter-

esting to see how well equation (6.95) predicts T , the period of oscillation. Only
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a few measurements were made on the oscillation period, mainly using the max-

imum and minimum setting of R25, which in the prototype circuit was a 470 kΩ

potentiometer. The measurement results are documented in Table 6.7 beside the

calculated values from equation (6.95) with R = R25 +R26.

Table 6.7: Measured relaxation frequencies against analytical estimates

R25 +R26 [kΩ] Tcalculated [s] Tmeasured [s]

Rmax = 470 + 6.8 5.72 5.84

Rmin = 0.0 + 6.8 0.094 0.116*

The results need some explanations. The peak-to-peak output voltage with the

largest resistance value was measured to be 8.1 V, VlimL was measured as 3.0 V,

and VlimH was measured as 5.3 V. These were the values used for calculating the

theoretical frequency of oscillation in the case of maximum resistance Rmax. The

minimum resistance changed the limiting voltages a bit, the output voltage being

approximately 7.5 V, VlimL ≈ 3.0 V and VlimH ≈ 5.3 V. These values were used for

calculating the case of minimum resistance Rmin.

The relative error in the minimum resistance case is clearly too high. The reason

is depicted in Figure 6.103. The capacitor C10 was noticed to be more harmful
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Figure 6.103: Transient spikes because of capacitor C10
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than useful. The capacitive coupling with the output signal at higher frequen-

cies messed up the behaviour of the oscillator and caused error to the period

of oscillation. When C10 was removed, the obscure spikes disappeared and the

oscillation period was measured to be 0.092 seconds. This result is in excellent

agreement with the theoretical result.

Because of the unexpected behaviour of capacitor C10, it was not possible to

study the effect of the added components on the oscillation periods of the ba-

sic relaxation oscillator of Figure 6.84a. But according to the calculations, the

difference would have been very small and unnoticeable in practical situations.

According to this testing and analysis, it would be better to remove resistor R23

and capacitor C10 from the oscillator solution of the Phase 45 circuit. In addition,

if someone wants to save money, the circuit would also work without capacitor

C6, which is only used to make the signal from the oscillator more round by

filtering out the higher harmonics. This does not affect much the overall func-

tionality of the circuit. The capacitors C5 and C8 could also be removed if the

signal coming from the oscillator has a peak-to-peak voltage close to 0.5 V. The

signal level of the modulating oscillator voltage can be increased by replacing

the 3.9 MΩ resistor by a smaller one, but then one needs to make sure that the

1 MΩ resistor is still in the correct range.

As a conclusion, a phase shifter effect consists of many interesting scientific de-

tails, which strongly relate to many other technical applications. It is extremely

useful to go through the details of the circuit and eventually make own modifi-

cations. Phase shifters are the favourite effects of many guitarists, so to build the

Phase 45 circuit as a do-it-yourself project is highly recommended.

6.10 A flanger

To be able to build a flanger effect pedal requires much more than basic discrete

analogue components can offer. Special integrated circuits are needed to produce

enough delay to create a true flanging effect, although in principle it could be

possible to imitate the functionality of the integrated circuit by several hundred

discrete analogue components. Due to the lack of ’all-analogue’ properties, the

flanger is not covered from a scientific point of view. Only the principles of

operation are described by words and a little mathematics.

Figure 6.104 describes the signal flow inside a typical flanger effect unit. Firstly,
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the input signal is split into two separate propagation paths just like in the phase

shifter effect unit. The first signal path leads directly to the output, and the

second path goes through a delay line, where the delay can be controlled with

external modulation. The delayed signal is summed to the clean signal just before

the output.

+

×

input output

alternating
delay time

rate   
depth

shape

Figure 6.104: A signal flow graph at the core of a typical flanger effect

The flanger would not be a flanger without the possibility to modulate the rate,

depth and shape of the delay acting on the signal. In the flanger effect, the delay

time is constantly changing and the rate controls how quickly the delay time is

changed between its limiting values. The depth parameter controls the range

of the delay time limits, and the shape indicates the modulation (sine, square,

triangle, etc.) how the delay time oscillates within its limits. [66, p. 211]

The essential signal shaping mechanism of the flanger effect is also good to un-

derstand in a theoretical level through a simplified example where the input

signal to the flanger is a set of harmonic frequencies with equal or arbitrary am-

plitudes. This theoretical test signal can be, for example, the signal obtained

from a vibrating string. The functional description of the signal is simplified here

to the form

y(t) =
N∑

n=1

1

n2
sin(n2πf0t), (6.118)

where f0 defines the fundamental frequency and n is the ordinal number of the

harmonic overtone. In this trigonometric series, the fundamental frequency has

the largest amplitude and others are lower by the square of the harmonic number,

just like in the case of the vibrating string.

It is absolutely necessary to highlight the difference between a flanger and a

phase shifter. With a simple two-stage phase shifter one can adjust the maximum

180 degree phase shift to only one frequency at a time. As a concrete example,
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one could have a signal as defined by equation (6.118) with a fundamental fre-

quency f0 = 50 Hz and one would design the single notch in a phase shifter to

cancel out the 20th harmonic frequency, which is 1000 Hz in this specific case.

According to the transfer function of the phase shifter, the frequency response

would have only one downward directed spike of a ’comb filter’ at 1000 Hz.

The same case is more versatile when implemented with a flanger. Now one

approaches the problem from the viewpoint of a time delay. The question is that

how much delay is needed to shift the 1000 Hz frequency component 180 degrees

out of phase? The answer is 0.5 ms. The phase shifter will give this same delay

at 1000 Hz. The essential difference to the phaser is that the time delay of the

flanger equally affects all frequency components in the signal. Therefore, in the

theoretical case where the test signal consists of only harmonic frequencies, all

the frequencies that are harmonic to the first cancelled frequency (1000 Hz in this

example) are also cancelled. This way the comb filter transfer function created

by the flanger is much more complex compared to the phase shifter. Figure

6.105 depicts the example situation where the set of harmonic frequencies with

f0 = 1000 Hz is delayed by 0.5 ms and then summed to the original signal.
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Figure 6.105: A constant-delay flanger effect applied to a theoretical test signal

The comb structure in this case is equally spaced. In the general case where the

input signal can be a mixture of any frequencies, the comb structure will become

extremely complex and diverse.
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The actual flanger effect does not keep the time delay constant. Only frequent

changes in the delay time create the hearing sensation that is commonly recog-

nised as the flanger. In the theoretical case where the input signal is defined by

equation (6.118), the time delay needed to cancel a certain harmonic frequency

component n and all its integer multiple frequencies can be calculated via the

formula

tdelay =
1

2nf0
, (6.119)

where f0 is the fundamental frequency.

6.11 Time effects

The effects in the time category rely on the power of mixing delayed signals with

the original signal to generate different effect types such as echo, reverberation,

chorus and flanger effects. To distinguish different effect types from each other,

the length of the delay is used as a parameter to categorise the effect into differ-

ent subgroups. A rough division into short and long delays assigns short delays

to be shorter than 15 ms, and if the delay is longer than 55 ms, the delay is con-

sidered to be long. Table 6.8 summarises all the necessary information about

different delay types and related effects.

Table 6.8: A categorisation of delay effects with respect to delay time

delay type delay length effect type

short delay < 15 ms flanger, pitch shift

medium delay 15 ms – 55 ms chorus, pitch shift

long delay > 55 ms echo, reverberation

The different delay effect types definitely need careful explanation because the

differences in some cases are diminishingly small. Let’s start from the group

of long delays, which consists of echo and reverberation effects. Echo can be

distinguished as a discrete repeating pattern of a delayed sound. The sounds that

work best when echoed are short impulsive type sounds repeated at relatively

long intervals. Reverberation is a more general echo of several continuous sounds

in a certain type of controlled environment, such as a room or concert hall. In

these two effects the delayed signal is added to the original signal so that it is

still recognisable as a copy of the original sound pattern. By changing the delay

time, reverberation in different kind of environments can be simulated. The
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theoretical means to create the reverberation effect is presented in section 6.13

and an actual analogue reverberation effect device is analysed in section 6.15.

In the group of medium length delay effects, chorus refers to the slightly asyn-

chronous sound of two simultaneously playing instruments. This effect can also

be referred to as double tracking in a studio recording session. By summing a

single guitar tone to itself with e.g. a 30 ms delay, it sounds like two guitarists are

playing the same tune simultaneously. Furthermore, adding the same tone with

several different medium length delays creates the sensation that several guitars

are playing simultaneously.

Flangers are more elegant short length effect devices as far as mathematics is

concerned. Flangers take advantage of the properties of the constructive and

destructive interference of signals, where the interference comes from summing

two or more signals. Since any type of continuous signal can be constructed as a

sum of sine waves, every sinusoidal component interacts with the delayed com-

ponents, thereby creating a comb filter to boost certain frequencies and cancel

some of the others. The flanger is therefore a moving comb filter that continu-

ously alters the delay in the interval of a short delay time, cancelling and boosting

different frequencies as it sweeps through the range. This effect creates a hear-

ing sensation that is best described as a whooshing or a ringing sound. A more

specific analysis on the flanger effect is given in section 6.10. [66, pp. 231 – 234]

Pitch shifting happens when the delay time is modulated to continuously change

its length. Since flangers and chorus effects are typically based on modulated de-

lay, those effects have the pitch shifting property as a side effect. The pitch shift

and the modulated delay have connections to a mathematical method called cor-

relation, more accurately autocorrelation and cross-correlation. The theoretical

basis of the pitch shift effect is opened up more extensively in section 6.12.

6.12 Theoretical pitch shift

Figure 6.106 illustrates how a constantly increasing time delay causes a down-

ward shift in the pitch of a note. Having a delay ratio of 2:1, the delayed sine

wave on the lower part of the figure has a period twice as long as the reference

sine wave. The nodes identified with letters a, b, c, d and e are used for indi-

cating a few strategical locations within one period of a clean sine wave in both

waveforms in Figure 6.106. Then all that is needed is to pay attention to the

amount of delay between the marked points in the two sine waves. This is what
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Figure 6.106: Pitch shift

is noticed on the delay for each point:

a → a = 0 ms

b → b = 1 ms

c → c = 2 ms

d → d = 3 ms

e → e = 4 ms

The delay is not constant, but the rate of change of the delay between two neigh-

bouring points stays constant. In general mathematical terms this could be ex-

pressed as

ttotal = tnormal + tdelay, (6.120)

which means that the total playback time ttotal consists of the playback time tnormal

of normal speed playback and the delay time tdelay. Equation (6.120) can also be

expressed as ratios to some reference unit of time. Then one is dealing with

playback rates defined as

∆ttotal

∆t
=

∆tnormal

∆t
+

∆tdelay

∆t
, (6.121)

which is a bit more understandable from the practical point of view. As an exam-

ple, a reference unit ∆t of 1 ms is adopted and the delay time is chosen as
1 ms

1 ms
.
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Then from equation (6.121) the total playback time would be

1 ms

1 ms
+

1 ms

1 ms
=

2 ms

1 ms
,

meaning that with the delay added, it takes 2 milliseconds to advance the ’tape’

by 1 millisecond. According to this evaluation, the total playback time will be

doubled if the normal playback is played with unity ratio, and the constantly

increasing delay will be equal to the reference unit. This also means that all the

tones in the playback will have their pitch lowered by one octave. So how much

delay is needed to lower the pitch by two octaves? In that case the total playback

ratio will be 4 to 1 and from equation (6.121)

∆tdelay

∆t
=

∆ttotal

∆t
− ∆tnormal

∆t
=

4 ms

1 ms
− 1 ms

1 ms
=

3 ms

1 ms
,

meaning that the delay ratio should be 3 to 1, if the normal playback is done with

a 1 to 1 scaling.

As a general result, to decrease the pitch of all audio by controlling the playback

speed the delay should have a constant increase by a fraction of some reference

unit of time. In other words, the total delay with respect to some fixed reference

point will grow continuously. To increase the pitch, the delay should have a

constant decrease by a fraction of some reference unit of time, meaning that the

rate of delay in equation (6.121) has a negative value. What all this confusing

definition hides behind it is that if an audio tape is played with slower speed, the

pitch will drop, and vice versa for higher speed playback. The rate of change of

the delay determines a factor, which scales the pitch of each frequency in equal

manner. [66, pp. 250 – 253 ]

6.13 A theoretical reverberation effect

Three essential parameters that define the reverberation texture are reverberation

time, bass ratio and predelay. The reverberation time indicates the duration of

a decaying sound of reverberation. The bass ratio compares the decay times of

low-frequency components to middle frequency components. The predelay is the

time difference between directly arrived sound and the first arrival of reflected

sound.

Convolution is often introduced in scientific literature in the context of several

physical phenomena, but yet there does not seem to be a distinct application that

directly yields results based on the convolution calculation. Luckily reverberation
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happens to give a clear meaning to convolution, and by using a set of impulse

functions it is possible to theoretically create a simple reverberation effect.

The discrete convolution of functions f(n) and g(n) is defined as

h(n) = f ∗ g =
n∑

m=0

f(m)g(n−m). (6.122)

The calculation process of the convolution function can be made more under-

standable by creating a table with the corresponding indices of f and g that are

added together as h(n).

Table 6.9: A grid of convolution components

f0 g0 f0 g1 f0 g2 f0 g3 . . . . . . . . .

+ . . . f1 g0 f1 g1 f1 g2 f1 g3 . . . . . .

+ . . . . . . f2 g0 f2 g1 f2 g2 f2 g3 . . .

+ . . . . . . . . . f3 g0 f3 g1 f3 g2 f3 g3

= h(0) h(1) h(2) h(3) h(4) h(5) h(6)

Table 6.9 is based on data sets f = [f0, f1, f2, f3] and g = [g0, g1, g2, g3]. When the

convolution is used for creating reverberation, the other data set will contain one

or more (unit) impulse points. By setting f = [1, 0, 0, 0], the result of the convo-

lution against g will be h = [g0, g1, g2, g3, 0, 0], which equals g. If f = [0, 1, 0, 0],

then h = [0, g0, g1, g2, g3, 0], which means that g has been delayed by one data

step. Reverberation is created by setting f = [1, 0, 1, 0, 1], because then delayed

copies of the original signal are summed to the clean signal just like indicated in

Table 6.10.

Table 6.10: Reverberation effect via convolution

g0 g1 g2 g3 . . . . . . . . . . . .

+ . . . 0 0 0 0 . . . . . . . . .

+ . . . . . . g0 g1 g2 g3 . . . . . .

+ . . . . . . . . . 0 0 0 0 . . .

+ . . . . . . . . . . . . g0 g1 g2 g3

= h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)
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The delay between reverberation components can be controlled by adding more

zeros between the (unit) impulses. The unit impulses need not to equal one,

since more realistic reverberation is achieved by slightly attenuating the rever-

beration components as time passes.

Creating a reverberation theoretically using the convolution also suggests that

reverberation can be considered a set of echoes that are generated recursively

[8, p. 167]. However, this kind of definition is in conflict with some definitions

that characterise the difference between reverberation and echo.

6.14 Analogue delay actuators

Delay and reverberation types of effect devices can be built using analogue tapes,

mechanical springs, mechanical plates and so-called Bucket Brigade devices (BBD)

to generate the desired type of delay to the signal. [65, p. 144][66, Ch. 9]

A delay line built by using analogue tape is useful because it can be easily modi-

fied from some specific home stereo tape recorders as described by Anderton [42,

pp. 95–97]. All you need is a three-head cassette deck (to play and record simul-

taneously) and a few simple mixer circuits – and the tape delay unit is ready for

use. Tape delays are most suitable for implementing the echo effect.

The Bucket Brigade device is fading the limits of analogue and digital electronics.

It creates a delay line from several MOSFET - capacitor pairs (see Figure 6.107),

where the signal moves from capacitor to capacitor at a speed determined by

an external clock circuit feeding the Bucket Brigade. The capacitors are used as

sample-and-hold devices, which at each clock pulse quickly charge up (or down)

to the voltage level of the preceding capacitor. When the MOSFETs are closed,

their resistance is so large that the capacitors will not discharge between the

clock pulses.

1 2 3 4

CLK1

CLK2

VGG......

......

......

Figure 6.107: The start sequence of a Bucket Brigade Device
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Bucket Brigade devices are most suitable for generating chorus, flanger and re-

verberation effects. The practical BB-devices are designed to operate within a

range of clock frequencies limited by maximum fmax and minimum fmin frequency

values. The maximum time delay given by a BBD is determined by the number

of stages N and the minimum clock frequency with equation

Tmax =
N

2fmin

, (6.123)

and likewise the minimum time delay

Tmin =
N

2fmax

. (6.124)

Springs and plates offer a mechanical propagation path, where the propagation

time is related to the physical dimensions of a spring or a plate. Mechanical wave

propagation in solid objects is always slower than electrical wave propagation in

wires. By using a two-way electromechanical transducer, the electric signal from

a guitar can be bypassed to a mechanical propagation path and the same sig-

nal can be transformed later back to the electrical domain. Between these two

transforms, the signal has been delayed in comparison to the directly travelled

electrical signal, and a sum of these two signals creates the desired effect. Be-

cause the image of a signal at some point in time will ’stay alive’ in the spring and

plate for quite long before decaying, these delay mechanisms are only suitable

for reverberation effects.

Even though the easiest way to build an analogue delay effect would be to use a

BBD or tape delay, it is more convenient to choose the spring reverberation device

to be taken under detailed investigation in the following section as an example

of a time-based effect. The idea from a technical point of view is fascinating,

because the implementation mixes electronics and mechanics in a very ingenious

way.

6.15 A reverberation effect using mechanical springs

The ultimate analogue version of a reverberation device has been introduced a

long time ago as a built-in effect block inside old tube amplifiers of the 1960’s.

The implementation of the effect is again quite simple, but also extremely inge-

nious. The electrical signal originating from the electric guitar is directed to a

system of coiled springs that act as a mechanical transmission line. The propaga-

tion mechanism provided by the springs introduces a set of repeatedly delayed
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signals as the waves bounce back and forth along the springs. The reflecting sig-

nal is restored to the electrical domain in the receiving end and finally summed

with the original ’bypassed’ signal to create the reverberation effect.

6.15.1 Wave propagation in a helical spring

From a scientific point of view it is extremely interesting to understand how

mechanical vibrations are propagating in the spring in general. To be more exact,

the springs in this context should be referred to as helical springs, since that is

by far the most common type of a spring used to create the reverberation effect.

The dilemma of wave motion in helical springs turns out to be more complex

than one would assume. Mechanical waves can propagate in a spring in several

ways through basic vibration mechanisms that are originally derived to model

wave motion within elastic rods.

In elastic rods there are three different types of waves possible: longitudinal

waves, transverse waves and torsional waves. The most obvious of these propa-

gation mechanisms are the transverse and longitudinal wave motion, which are

already familiar from the analysis of the theoretical guitar string model. The tor-

sional wave is set about by twisting the elastic rod around its axis of revolution

so that the angle differences of twist propagate along the rod.

In springs the typical elastic rod propagation mechanisms appear in doubles. Pri-

marily, for the sake of mathematical modelling, the helical spring is considered

in this context as a hollow elastic rod with the same radius as the helix of the

spring. Additionally the wire itself, which is curled to form the helical structure

of the spring, can be considered an elastic rod. Therefore, there exists the lon-

gitudinal, transverse and torsional modes of wave propagation for the complete

helix structure and separately the same three modes for the wire alone [88]. Fig-

ure 6.108 visualises four of the six possible propagation mechanisms in a helical

spring with helix radius R, wire diameter r and axial helix length La. The axis of

revolution of the helix is chosen to be aligned with the x-coordinate axis.

At first thought, one might assume that in the spring reverberation unit the signal

travels along the spring as a longitudinal wave. The most significant question to

be answered is that how long delays does a helical spring with certain physical

properties create? In the case of longitudinal waves, the velocity of propagation

can be calculated from a formula:

cL = La

√

k

m
, (6.125)
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R

r

La

x

1.

2.

3.

4.

1 = torsional motion of the wire   

2 = transverse motion of the helix

3 = longitudinal motion of the helix

4 = torsional motion of the helix     

Figure 6.108: The basic geometrical dimensions of a helical spring

where La is the length, m is the mass and k is the force constant of the spring.

The result of equation (6.125) is analogous to the equation of longitudinal waves

in a string, which is already derived in section 2.1.3. In this case, the starting

equation for the force is

F = −kx, (6.126)

which is familiar from any book of basic physics. To keep the derivation robust

for springs of any axial length La, the force in equation (6.126) should arise from

stretching (or compressing) the spring the from the resting length La to length

La
∂s

∂x
, i.e.

F = −k

(

La − La
∂s

∂x

)

.

Here ∂x is the infinitesimal unit of length and ∂s is the stretched length of the

infinitesimal piece of spring. From this initial setup, the spring is set to motion

by arranging a force difference between the ends of the infinitesimal piece of the

spring, namely

dF = F (x+ dx)− F (x) =
∂F

∂x
dx = kLa

∂2s

∂x2
dx.

The mass is again defined for the length dx, so that the Newtonian equation of

motion is

kLa
∂2s

∂x2
dx = ρA

∂2s

∂t2
dx,

where the lengths dx cancel from both sides and one is left with ρA =
m

La

, which

is the mass of the spring if the length is divided away. This type of definition for
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mass is commonly referred to as mass per unit length. Hence, the final simplified

form of the equation of motion reads

k

m
L2
a

∂2s

∂x2
=

∂2s

∂t2
,

and the velocity of the longitudinal waves travelling along the helical structure

of the spring can be assigned as c2L = L2
a

k

m
.

Figure 6.109 is drawn to explain the torsional motion. The figure shows a typical

model of an elastic rod, which is twisted around its axis of revolution by the

moment of force M .

θ

M

dx

θ +
∂θ

∂x
dx

M +
∂M

∂x
dx

R

Figure 6.109: A torsion model of an elastic rod approximating a helical spring

Yet again, for a simple analysis, the linear models derived for elastic rods are

applicable also for helical springs. For the torsional motion of the helix, the

starting equation comes from the definition of the moment of force,

M = Fx = J
θ

x
= Iα = ρIpα, (6.127)

where F is the force and moment M is measured at a point where the force is

influencing through distance x. The alternative equality, where J is the torsional

rigidity and θ refers to the angle of twist along the axis, follows directly from

the theory of elasticity [89] and it can be derived from geometry. The mass

acceleration term follows from the mass moment of inertia I and the angular

acceleration α. The other measure for inertia introduced in equation (6.127) is

the polar moment of inertia Ip, which is more often used along with torsional

forces.
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The angular acceleration is commonly defined as the second time derivative of

the rotation angle, i.e.

α =
∂2θ

∂t2
.

Combined with the mass moment of inertia I, angular acceleration creates a

rotational analogue to the classic Newtonian force equation F = ma. The inertia

moments for several geometrical shapes are tabulated in common textbooks of

physics, and if the helical spring is considered a hollow cylindrical rod, then

Ihelix = mR2, where R is the radius of the helix.

Considering now a situation where the spring is fixed at the other end and the

other end is rotated around the axis of revolution of the spring by some angle

θ, the moment is created according to equation (6.127). The differences in the

angular twist between the ends of a segment under analysis can be linearly re-

duced within the infinitesimal distance dx of the spring. In mathematical terms,

this yields an equation

M = J
∂θ

∂x
= krLa

∂θ

∂x
,

where the latter part also suggests that the length of the spring changes as the

rotation angle changes between the ends of the spring segment. The rotational

force constant (or stiffness constant) kr now affects the relative distance that the

spring compresses or stretches during an infinitesimal rotation. [90]

Changes in the moment of force create motion to the spring, and therefore one

needs the differential

dM = M(x+ dx)−M(x) =
∂M

∂x
dx = krLa

∂2θ

∂x2
dx.

Since the moment of inertia I of an infinitesimal piece of spring is ρAR2dx, the

Newtonian equation of motion can be written as

krLa
∂2θ

∂x2
dx = ρAR2∂

2θ

∂t2
dx,

where the lengths dx cancel from both sides, and leaves ρA =
m

La

, which equals

the mass per unit length of the helical spring. Therefore,

krL
2
a

mR2

∂2θ

∂x2
=

∂2θ

∂t2
,

and the velocity of the torsional waves in the helix structure can be assigned as

c2R =
krL

2
a

mR2
. The naming convention with the subscript R might be misleading in

this context, but this comes from the need to separate the torsional motions of

the helix and the wire itself. Hence, the torsional waves are imagined to create
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rotational motion of the spring, and the naming of the velocity term cR follows

from this rotation.

The differential equation for the torsional waves moving along the wire of the

spring is derived exactly like the equation for the torsional waves in the helix,

the only difference being that the torsional rigidity and the moment of inertia

are evaluated for the wire that forms the spring. This means that the radius R in

Figure 6.109 refers now to the radius r depicted in Figure 6.108. To get confused

even more, different parameters from equation (6.127) are preserved to yield the

final result. By choosing the torsional rigidity J instead of krLa and ρIp instead

of the mass moment of inertia I, the differential equation is of the form

J

ρIp

∂2θ

∂x2
=

∂2θ

∂t2
,

where

c2To =
J

ρIp
=

J

ρA

1

κ2
=

GIp
ρA

1

κ2
=

G

ρ
. (6.128)

The constant κ refers to the radius of gyration and G is the shear modulus.

Because in some cases the values for the force constants k and kr are unknown, it

is better to derive approximate formulae to calculate the velocity of wave propa-

gation in the spring. According to Wittrick [90], the force constants k and kr can

be written as

k =
J

LtotR2
and kr =

EAκ2
1

Ltot

,

where J is the torsional rigidity, Ltot is the total length of the wire in the spring

and κ1 is the radius of gyration along the axis where the bending moment is

affecting. These expressions are valid if there is no coupling between the lon-

gitudinal and torsional wave motion. Otherwise these can be taken as a good

approximations from the actual values of the force constants.

The idea to proceed from here is to concentrate on the actual propagation times

tL =
La

cL
=

√
m

k
and tR =

La

cR
=

√

mR2

kr

for the longitudinal and torsional waves in the helix respectively. It is important

to note that these propagation times are independent of the axial length of the

helix. These propagation times can be reduced to the case where the wave trav-

els along the curled wire of the spring where the total length of propagation is

Ltot, instead of along the axial length La of the helix. This reduction is justified
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because the wave must primarily propagate along the wire, and from there it

causes the axial or rotational motion of the helix structure.

With the alternative forms for the force constants, the expressions for these re-

duced propagation times are

tL = LtotR

√

ρA

J
and tR = Ltot

√

ρAR2

EAκ2
1

,

where the substitution m = ρALtot has been made. This substitution is very valid

because it actually results in the total mass of the spring wire.

In these reduced cases the wave velocities become

cL =
Ltot

tL
=

1

R

√

J

ρA
and cR =

Ltot

tR
=

√

EAκ2
1

ρAR2

and for the torsional waves in the helix along the circular wire with κ1 =
1

2
r, the

result

cR =
r

2R

√

E

ρ

is directly obtained by simplification.

For the longitudinal case, it is beneficial to note that from equation (6.128),

c2To =
1

κ2

J

ρA
,

so that

cL =
κ

R
cTo,

because of the common term
J

ρA
.

For a wire with a circular cross section, κ =
r√
2

, and this leads to a relation

between the velocities of longitudinal waves along the helix and torsional waves

along the wire as

cL =
r√
2R

cTo,

where r is the radius of the wire and R is the radius of the helix. This is important

because now all the parameters in the expressions for the velocities are easily

measured from the actual spring.

In addition to the linkage with the longitudinal motion of the helix and the tor-

sional motion of the wire, there also exists the relation

cR =

√

kr
kR2

cL =

√

EId
GIp

cL
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between the axial and torsional propagation velocities in the helix. Here Id refers

to the diametrical moment of inertia, E is the Young’s modulus, G is the shear

modulus and Ip is the polar moment of inertia. This relation can be used for

approximating the propagation velocity of torsional waves in the helix structure

if the longitudinal propagation velocity is known. [90] [91] [92]

A practical example of the validity of the equations presented above must be

shown. Let us assume a spring where the dimensions are measured as indicated

in Table 6.11.

Table 6.11: The measured dimensions of a typical helical spring

helix length La helix radius R wire radius r turn count N

0.0163 m 0.0022 m 0.000175 m 303

In addition to these measured values, from tables of physical constants one can

find the values for Young’s modulus, shear modulus and density of steel as E =

200 · 109 Pa, G = 80 · 109 Pa and ρ = 7800
kg

m3
respectively. With these numerical

values, the propagation velocity of torsional waves along the helix of the example

spring becomes

cR =
r

2R

√

E

ρ
=

0.000175 m

2 · 0.0022 m

√
√
√
√
√
√

200 · 109 kg · m

m2 · s2

7800
kg

m3

= 201.4
m

s
.

The velocity of torsional waves travelling in the wire of the spring is

cTo =

√

G

ρ
=

√
√
√
√
√
√

80 · 109 kg · m

m2 · s2

7800
kg

m3

= 3202
m

s
,

and with the help of this value it is possible to calculate the velocity of the longi-

tudinal waves along the helical structure of the spring, where the velocity is

cL =
r√
2R

cTo =
0.000175 m√
2 · 0.0022 m

· 3202 m

s
= 180

m

s
.

These results indicate that the velocity of the torsional waves along the helix is

slightly larger compared to the velocity of the longitudinal waves along the helix.
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To determine the propagation times, it is necessary to evaluate the total length

Ltot of the wire in the spring. Here one can use the standard methods of arc

length calculations for vector functions. A helix with a radius R can be parametrised

with the vector equation

~r(t) = R cos t î+R sin t ĵ + bt k̂, (6.129)

where the multiplier b defines how much the helix curve proceeds upwards (or

forward) for each turn of the wire. Obviously each full turn requires that t in-

creases by 2π. The definition of the arc length element ds is

ds =

∣
∣
∣
∣

d~r(t)

dt

∣
∣
∣
∣
dt,

which can be integrated over the range defined for the parametrisation variable

t to give the total length of s.

The arc length element for the helix is obtained from equation (6.129) by first

calculating the derivative

d~r(t)

dt
= −R sin t î+R cos t ĵ + b k̂

and then forming the expression of the arc length element

∣
∣
∣
∣

d~r(t)

dt

∣
∣
∣
∣
dt =

√

R2 sin2 t+R2 cos2 t+ b2 dt =
√
R2 + b2 dt. (6.130)

Before integrating the total length, the parameter b should be determined to

reflect the actual rise of the helix curve at each turn of the wire. So, if the helix

has N turns, t increases by 2π with each turn, and the axial length of the helix is

La, then

b2πN = La ⇒ b =
La

2πN
.

After substitution into equation (6.130), this results in an arc length element of

the form
1

2πN

√

(2πRN)2 + L2
a dt

and integration over the whole range of t yields

Ltot =

2πN∫

t=0

1

2πN

√

(2πRN)2 + L2
a dt =

√

(2πRN)2 + L2
a.

The use of this formula in this example gives a total length

Ltot =
√

(2πRN)2 + L2
a =

√

(2 · π · 0.0022 m · 303)2 + (0.0163 m)2 ≈ 4.19 m,
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where the variables are as indicated in Table 6.11.

Using the calculated value of the total length Ltot, the propagation time of the

torsional waves along the helix sums up as

tR =
Ltot

cR
=

4.19 m

201.4
m

s

≈ 0.0208 s

and similarly the time for the longitudinal wave to travel once through the helical

structure is

tL =
Ltot

cL
=

4.19 m

180.0
m

s

≈ 0.0233 s.

These are the times for the waves to travel from the input side of the spring to

the output side. This means that these are the primary delay times measured on

the first reflection at the output. The other reflections travel twice the distance,

so the actual delay time obtained with the example spring is around 40− 50 ms,

which is exactly the amount of delay needed for the reverberation effect (see

Table 6.8). Therefore, the calculation procedures presented above for the wave

velocities are to be trusted to give good approximations on the wave propagation

times in the spring.

Unfortunately the differential equations from where the delay times are derived

are again naively simple and they do not represent a realistic model of the spring.

These simple models give the impression that waves of all frequencies travel

along the spring with the same velocity. In reality the helical spring is very dis-

persive, meaning that higher frequencies travel slower than low frequencies. Ad-

ditionally, a practical spring has a cut-off frequency of about 4000 Hz. This means

that frequencies above this limit are not propagating in the spring at all. This fol-

lows directly from a dispersion relation equation, where the local maximum of

the dispersion relation corresponds with the point of minimum propagation ve-

locity. [93]

Figure 6.110 visualises the dispersion curve for a situation where a set of waves

with a large number of ’harmonic’ velocities/frequencies is travelling along a

spring. In an ideal case of linear dependency between the wave number and the

frequency, Figure 6.110 would show a straight line, but now it is quite far from

being linear. The first upper partials with low wave numbers behave somewhat

like in a string, where the dispersion relation gives almost a linear dependency for

the wave number and the frequency. After reaching the cut-off frequency fc at the

wave number nc, the higher upper partials start to decrease in frequency, which is
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Figure 6.110: Dispersion of wave propagation in a spring

kind of difficult to understand at first. Basically this just means that the velocities

of waves with a certain frequency are decreasing. Eventually the dispersion curve

reaches a second minimum, whereafter the behaviour is approximately linear for

very high frequencies. The general shape of the dispersion curve varies with

geometrical properties, such as the helix radius and the increment angle of the

helical structure. [94]

Generally speaking, each individual spring used in a commercial reverberation

unit offers a slightly different propagation time. For units with two springs, the

other spring has a relatively short delay time of approximately 30 milliseconds

and the other has a longer delay time of approximately 45 milliseconds. If there

is a third spring in the unit, then that normally has a medium delay time of

about 37 milliseconds. These values are obtained from specifications provided by

Accutronics. Differences to this delay arrangement might exist in reverberation

units manufactured by different companies.

6.15.2 Interfacing electrical and mechanical vibrations

There exist companies that sell spring reverberation units as a ready-made en-

semble so that the do-it-yourself enthusiast does not have to build all the me-

chanics from scratch. The only thing that is needed to integrate the reverber-

ation effect to the propagation path of the guitar output signal is to design the

electronics around the reverberation unit.
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The most common type of a spring reverberation unit [95] ever used was origi-

nally designed by the Hammond Organ company in the beginning of 1960’s. The

basic principles of this mechanism are depicted in Figure 6.111. Hammond had

patented a few other spring mechanisms already before this solution, but those

were not as nearly as robust and compact as this design is.

signal input signal output

drive coil

laminated iron plates

cylindrical magnet

spring

support housing

sensing coil

Figure 6.111: Top view of the coil - magnet - spring coupling mechanism

In the reverberation unit depicted in Figure 6.111, the signal from the guitar is

fed as a current to the drive coil of the spring unit. The current in the coil creates

a magnetic field to the iron core inside the coil and alternating currents of the

guitar output signal create a varying magnetic field. The springs are attached

to small ferromagnets, which are magnetically coupled with the magnetised iron

core. The changing magnetic field in the iron core causes rotational movement

to the ferromagnets that couple the mechanical vibrations to the springs. The

vibrational wave front travels along the springs at the velocity defined approxi-

mately by equation (6.125), and when the signal reaches the output terminal of

the spring unit, part of the signal reflects back towards the input and back to the

output again. This way a decaying series of echoes is achieved.

The output side of the spring unit has the same mechanical construction as the

input. The springs are attached to small ferromagnets, and the motion of those

magnets creates a changing magnetic field to the iron core that goes through

the output coil. This changing magnetic field generates a current to the output

coil. The waveform of the output current is a replica of the input current. To

finally create the actual reverberation effect, the delayed signal recovered from
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the springs is combined with the original signal.

Figure 6.111 gives the impression that only one complete spring is used between

the input and output. The system works fine with one spring, but using two

springs coupled in series as shown in Figure 6.112 is mentioned to have some

benefits over the one spring approach.

CW winding CCW winding
coupling

Figure 6.112: Coupling of two springs wound in alternative directions

As shown in Figure 6.112, the other spring is mounted so that its windings appear

to rotate clockwise (CW) and the other in the opposite direction of the counter-

clockwise (CCW) rotation of windings. The torsional waves travelling in the

first spring will also excite longitudinal wave motion to the spring. The problem

is now that the torsional and longitudinal waves propagate at slightly different

velocities and their internal coupling can cause unwanted resonance effects in

some cases. In this two-spring setup, the longitudinal waves are dampened,

since as the other spring compresses longitudinally due to the torsional rotation,

the other spring expands and somewhat cancels the longitudinal motion of the

coupled spring system [92]. A clever workaround, but sometimes the coupling of

longitudinal and torsional waves can create interesting and wanted side effects

along with the pure reverberation. So eventually it is just a matter of taste to

use one spring or two longitudinally coupled springs as the gateway between the

input and output terminals of the reverberation unit.

Figure 6.113 shows a 90 degree projection on the drive transducer and the pickup

transducer. The figure shows more clearly how the small cylindrical magnets are

aligned with the yoke, which is made of laminated iron plates. The drive and

pickup transducers have differently shaped iron yokes, because the requirements

for shielding are different in the input and output sides. The signal is very weak

at the output pickup, so therefore it needs better magnetic shielding to protect

against external disturbances. The almost closed outer construction of the yoke

provides the extra shielding in this case.
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(a) Input driver

(b) Output transducer

Figure 6.113: Projections of the drive (input) and pickup (output) transducers

Figure 6.114 indicates the magnetisation of the iron core due to the current

flowing in the coil. The direction of the magnetic field is defined by the polarity of

the top and bottom bars of the U-shaped iron core. The direction of the magnetic

field changes with the direction of the alternating current in the coil. This system

works as an electromagnet where the iron core is magnetised only when current

is flowing in the coil.

The small cylindrical magnets that are connected to the springs are permanent

magnets and they are initially magnetised in the transverse direction so that the

long sides of the magnet have the magnetic polarity of N or S. As the magnetic

polarity of the iron core interchanges between N and S, the cylindrical magnets

align themselves according to the rules of magnetic attraction. Therefore, the

cylindrical magnets transfer the alternating current signal as a rotational move-
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ment to the springs.

N

S

S N S N

magnetic field within yoke

alternating current

~B

Figure 6.114: Magnetic interactions at the input transducer

A rotation at the end of the spring compresses the spring, and hence a force

difference is created between the nearby curls of the spring. This force difference

creates longitudinal motion in the spring that propagates towards the other end

of the spring. Although the motion is not purely longitudinal, but more like

rotational, the equation for the longitudinal speed of propagation can still be

used to predict the time that the signal is propagating to the other end. The

rotational motion unwraps from the spring when the force pulse has reached the

end of the spring.

6.15.3 A drive and recovery circuit for a reverberation unit

Figure 6.115 illustrates an example of the interface to feed the drive coil of the

springs with an amplified signal from the guitar and to recover the signal after

it has travelled through the springs to the sensing coil. This design is copied

directly from an article by Craig Anderton, published in the September edition of

the Guitar Player magazine back in the year 1976 [96]. This design uses a basic

quad op-amp IC as a central component to drive a reverberation unit with the

guitar signal and to recover and sum the delayed echoes to the original signal.

The actual component values for this circuit are listed in Appendix D.

The magnitude of the magnetic field in the iron yoke depends on how much

current is flowing in the drive coil of the reverberation unit. With this in mind, it

is worth noting that basic op-amps are not able to create reasonably large output
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Figure 6.115: A circuit diagram of the ’Stage Center Reverb’ effect

currents. That is why this particular design cannot drive reverberation units

which have a low input impedance. Luckily there are a variety of reverberation

units available with plenty of input impedance alternatives. A suitable nominal

input impedance of the reverberation unit used with the circuit of Figure 6.115

would be from 150Ω to 400Ω. The input impedance of the reverberation unit is

almost completely inductive, and the value of the given nominal input impedance

is measured at 1 kHz input signal frequency.

To be able to use reverberation units with e.g. 8Ω input impedance, the interface

with the drive coil should be enhanced with a power amplifier block. The IC

LM386 should be quite suitable for getting a larger drive current to the reverber-

ation unit, but the additional drive section can also be built after a basic op-amp

section using two discrete transistors in a push-pull configuration.

In the schematic 6.115, the first operational amplifier IC1 is used only as a buffer
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interface between the guitar and the reverberation drive section without any am-

plification. The second operational amplifier IC2 that feeds the current to the

reverberation unit is the most significant component in this circuit. Because the

impedance of the drive coil is growing with frequency about 20 dB per decade,

the gain given by the drive circuit must somehow provide similar frequency de-

pendent amplification. This is achieved with a biquad filter construction depicted

in Figure 6.116.

R1

R2

C1

C2

Vin

Vout

Figure 6.116: A simple band-pass biquad filter

The transfer function of the band-pass filter of Figure 6.116 is

Vout

Vin

=
−s

1

C2R1

s2 + s

(
1

C1R1

+
1

C2R2

)

+
1

C1C2R1R2

. (6.131)

This transfer function can be derived directly from the amplification formula of

the inverting op-amp configuration, which states that

Vout = −Z2

Z1

Vin,

where in this specific case substitutions

Z2 =
R2

1

sC2

R2 +
1

sC2

; Z1 = R1 +
1

sC1

are made.

These substitutions lead to the equation

Vout =
R2

(sC2R2 + 1)

(

R1 +
1

sC1

)Vin,
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from where the final result (6.131) can be simplified.

In addition to the purpose of providing the frequency dependent amplification,

the gain of the circuit 6.115 is intended to be adapted to reverberation units with

a different input impedance by adjusting the value of R2. Figure 6.117 shows

what this actually means in practise and what kind of transfer characteristics the

filter has in general.
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Figure 6.117: Drive stage transfer characteristics with different values of R2

According to the frequency response curves of Figure 6.117, the filter seems to

provide the rising 20 dB per decade gain as needed, but considering the ∼ 4000

Hz cut-off frequency of the springs, it seems that the centre frequency of the filter

has been fixed too low. It is difficult to say whether this has been intentional from

the designer, but more tonal properties could be obtained from the reverberation

unit if the centre frequency of the band-pass filter would be risen closer to 4000

Hz. This can be done by decreasing the values of R1, C1 and C2 and adapting

the gain by increasing the value of R2 (= R3 in schematic 6.115). However,

there are problems in keeping the bandwidth of the filter in a reasonable range

when changing the values of any component. This can be seen directly from

the transfer function, where the same components are defining both the centre

frequency and the quality factor of the filter. Otherwise this combination of gain

and filtering is an adequate solution for this purpose; not perfect, but adequate.
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At the recovery side of the reverberation unit, the operational amplifier IC3 is just

a standard gain stage, which must have a very large gain to actually amplify the

weak recovered signal from the mechanical propagation path. From the recovery

gain section the signal proceeds to the operational amplifier IC4, which is just

a summing amplifier to mix the ’dry’ (original) and ’wet’ (reverberated) signals

together. Potentiometers R6 and R7 determine the user controllable mixing ratio

of the dry and wet signals.

6.15.4 Measurements on the reverberation device

To test how the spring reverberation mechanism works in practise, two rever-

beration units were purchased and connected to the circuit 6.115. The rever-

beration units were cheap copies from the original Accutronics models 8AB2A1B

and 1BB2C1B, which have input impedances of 10Ω and 150Ω respectively. The

input impedances are reported by the manufacturer and the impedances are ap-

plicable for a 1 kHz test signal. Naturally the impedance changes with frequency,

since the drive coil is almost purely a reactive component.

The interface circuit shown in Figure 6.115 was built onto a solderless bread-

board to ease out the measurements and possible modifications. A LM224J quad

op-amp chip was chosen to be used as the central component, only for the rea-

son that it had already been bought for an earlier project and it was currently

the only one readily available without having to buy any new ones. The nominal

output current from LM224J is around 40 mA, and that is the only significant

op-amp parameter for this circuit.

The very first finding from the measurements was that the reverberation unit

8AB2A1B with a 10Ω input impedance cannot be used with the circuit of Figure

6.115 because the current output obtained from the driving operational amplifier

is not large enough. Therefore, the prototype measurements were done using the

reverberation unit 1BB2C1B only.

The primary point of interest was to experimentally find out the propagation time

of the signal in the springs. By creating a very short impulse to the input of the

reverberation unit, it is then possible to measure the propagation of the signal in

the springs and to see as the impulse is reflected back and forth in the springs. In

this home-made experiment, one end of a guitar cable was plugged into the input

terminals of the circuit, and the short impulse was created by quickly hitting the

open end of the cable with a thumb. There are surely better ways to create short

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



6.15 A REVERBERATION EFFECT USING MECHANICAL SPRINGS 473

impulses, but the thumb was the quick and dirty way of tackling the problem this

time.

Figure 6.118 shows the first and second reflections of the impulse signal, and

from the figure it is possible to determine the delay time of the two springs

and notice the difference between them. The reflected signals from each of the
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Figure 6.118: The first reflections from the two springs, a and b

two springs are identified in the figure with letters a and b, and their subscripts

indicate the ordinal number of reflection, i.e. a1 refers to the first reflection of the

signal in spring a. From the first reflection it can be seen that the propagation

time for the signal to travel from input to output is approximately 23 ms for

spring a and 29 ms for spring b. These are the primary delay times of the springs.

The following reflections defining the secondary delay times take double the

times mentioned above, since the signal travels twice the length of the spring

before reaching the output again. Therefore, the actual delays obtained from the

springs are approximately 46 ms and 58 ms, and these times are in a relatively

good agreement with the definition of the reverberation type of delay indicated

in Table 6.8.

Already from the reflection identified as a3 in Figure 6.118 it is possible to notice
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some smearing of the reflected pulse. This is most likely due to the fact that the

spring is a very dispersive propagation medium, so the high frequencies travel

slower in the spring compared to the low frequencies. Since the input pulse

was not a pure sine pulse, it is constructed of several different frequencies that

propagate at different velocities in the springs.

Figure 6.119 offers a view from a longer time period where the effect of dis-

persion is more clearly seen. In addition to the smearing of the wave in a single

spring, at some instances of time the wave of the other spring reflects at the same

time as the other. This created even more chaotic smearing of the original simple

input pulse.
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Figure 6.119: A broader view on the reflective reverberation process

In a more general scope, the interest is also towards the decay time of the rever-

beration. This was tested by giving a slightly longer test pulse to the circuit to

create a continuous reverberation waveform with several reflections summed up

together. The actual shape of the input signal and the resulting decay waveform

are depicted in Figure 6.120. From the decaying envelope of the reverberation

output it is possible to approximate the decay time and also verify that the re-

verberation unit is actually working as it should, since the manufacturers usually

give the typical decay times in the datasheets.
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For this specific reverberation unit, the decay time was reported as a range from

1.75 seconds to 3 seconds in the datasheet, but no specific information is given to

what level the signal decays within the given time frame. The measured decay in

Figure 6.120 appears to be somewhere inside these limits, so the reverberation

unit seems to be working properly with the setup used.
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Figure 6.120: The approximate decay time for a burst of sound

For some input frequencies the reverberation waveform starts to resemble a

standing wave with equally spaced crests and notches. Most likely this is due

to the mixing of the similar signals in both springs. The standing wave effect is

visualised in Figure 6.121. This happens more clearly with certain frequencies,

while some other frequencies might not show any tendency to the standing wave

phenomenon. There might also be some resonance effects behind this type of

behaviour.

A note on the linearity of the reverberation unit: although a helical spring is a

very dispersive platform for wave motion, single frequencies can propagate in

the spring without any distortion what so ever. Figure 6.122 depicts a situa-

tion where a continuous sine wave is transmitted to the reverberation circuit.

Surprisingly the output is also a clean sine wave and there is no evidence of

reverberation noticed.
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Figure 6.121: Beats in the reverberation waveform
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Figure 6.122: A spring as a linear medium of propagation
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In this kind of situation, the reflected sine waves sum up with a different phase,

but the period is still the same. With any phase difference this situation results

in a wave with the same period, but additionally if the phase difference is in a

suitable range, the wave keeps the shape of an ideal sine. However, it has to be

mentioned that this kind of clean mixing of the waves does not happen for all

phase differences, and most likely in the majority of cases the sum of reflections

will cause additional bumps to the waveform. Nevertheless, in all cases of pure

sine wave reflections, the period of the output signal is the same as for the input

signal.
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Chapter

7

Guitar amplifiers

Based on topics discussed in section 1.3.8, it is already known that transistors are

used for signal amplification. A quick conclusion might be to assume that guitar

amplifiers contain a lot of transistors. This assumption is partially correct, but

there also exists an alternative amplification device. Before transistors were in-

vented, early radio receivers used some special components to amplify the weak

signal of radio transmission. These radios of the old days are often called tube

radios and the amplification devices used on them are called electronic tubes or

vacuum tubes. These electronic tubes are still manufactured these days and the

most common commercial products to use these tubes are guitar amplifiers. So

again it is not always about using the most modern technology to achieve the

best results, it is the quality of sound that matters and for that purpose tubes are

good building blocks for guitar amplifiers.

Because of the two different choices over the amplification device, guitar am-

plifiers can be roughly divided into classes of tube amplifiers and solid-state

amplifiers, where the term solid-state covers all transistor types. Although the

tube based guitar amplifiers are claimed to offer the ultimate tone, transistors

as general amplifier elements have many advantages over tubes. Some main

advantages are that transistors do not need to be heated, they are smaller and

lighter, operate with low voltages and are mechanically more rugged compared

to the vacuum tubes. The disadvantages of transistors are temperature sensitiv-

ity, relatively low maximum values for output power and voltage swing and a

wide spread of characteristics of a given type of transistor; in these categories

the tube offers better performance over the transistor. [19, pp. 321 – 322]

As far as guitar amplifiers are concerned, the transistor based implementation

seems to be a safer choice for a small low-power amplifier used at home. For a
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large outdoor concert session, a stack of high-power tube amplifiers might be the

better option. In any case, both approaches provide fully functional amplifiers

for electric guitars.

7.1 Common guitar amplifier building blocks

The most essential parts of a typical guitar amplifier are the preamplifier, tone

control and power amplifier sections. In between these stages there might be a

few additional voltage amplifier sections to increase the total voltage gain of the

amplifier. This kind of amplifier flow model is aligned with the general model of

an audio amplifier system, where the input and intermediate stages are aimed to

amplify a small input excitation to a large enough level to drive the output stage.

The output stage is a current delivering buffer that typically feeds an inductive

transducer, which in the case of guitar amplifiers is a low-impedance loudspeaker

or even an array consisting of several loudspeakers.

Figure 7.1 shows a block diagram view to one practical assortment of sequential

amplifier stages inside a guitar amplifier. The main objective at the input side is

to get as much voltage gain as possible. At the amplifier output, the loudspeakers

need a lot of current instead of voltage, so therefore a power amplifier stage is

needed there to provide a large current flow and a suitable impedance matching.

preamplifier
voltage

amplifier
tone control

phase

splitter

power

amplifier

Figure 7.1: A block diagram of typical guitar amplifier stages

There is of course plenty of room inside the amplifier to extend the design to

include different kinds of effects and switches. Typically many commercial am-

plifiers contain a built-in effects unit offering different kinds of distortion effects

and reverberation. Since the effect devices have been covered already in the

previous section, here the focus is on the most basic amplifier assembly. The fol-

lowing sections reveal more closely on a component level what actually is inside

each amplifier block by analysing a few simple circuit elements using tubes and

solid-state devices.
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7.2 Operation mode classes of audio amplifiers

In general terms, different operation modes of the power amplifier output buffer

section have been divided into different alphabetically named classes. These

classes of operation are strongly related to different ways to bias the tubes or

transistors at the output stage in a so-called ’push-pull’ configuration. Details

of this push-pull mode will follow in later sections. The most commonly used

operation classes in audio amplifiers are the A, B and AB classes.

In the class A operation mode, the amplifying elements are biased so that the in-

put signal can swing peak-to-peak without saturating or cutting off the amplifier

element (tube or transistor). The operating point and the input signal level are

designed so that the current in the plate (or collector) circuit of each amplifying

element flows all the time.

Class A is the most commonly used class in basic voltage amplifier stages, and it

can be considered the traditional method of amplification. Class A amplifiers are

mainly intended to be used in the linear region of their characteristic properties

to avoid excessive distortion arising from the nonlinear region. For large-signal

amplification, nonlinear distortion from a class A configuration is unavoidable.

Amplifiers in this class do not necessarily need to be in a push-pull configuration,

so that a single amplifier element can be used to implement a class A output

buffer.

The second important amplifier class is class B, which requires that the output

buffer has the push-pull configuration implemented with matched amplifier el-

ements. In the DC quiescent state, both of the amplifying elements have been

biased exactly on the verge of cut-off so that ideally no idle currents are flow-

ing without the input signal. This is a big benefit when considering the total

dissipative power consumption of the amplifier.

When an input signal is applied to the class B output buffer, the positive parts

of the input voltage activate the other element from the cut-off state and the

negative parts activate the other element. The uneven biasing arrangement in

the class B amplifiers increases the effective range of voltage levels which the

push-pull configuration can take as input. If the input voltage is sinusoidal, am-

plification takes place only for a half cycle, as shown in Figure 7.2.

In practice it is almost impossible to arrange the amplifier elements to have iden-

tical cut-off biasing. For this reason the class B amplifiers suffer from quite severe
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distortion (called crossover distortion) at the transition region, where the other

element cuts off and the other goes to the active region. Because of this distor-

tion, high fidelity audio amplifiers very rarely use a pure class B construction in

the output buffer. On the other hand, class B amplifiers benefit from the push-

pull configuration to reduce harmonic distortion. The reasons leading to this

distortion reduction are explained later in section 7.3.

The class AB is a delicate mixture or a harsh compromise of the A and B classes

and it is clearly the most popular class used in audio amplifiers in general. In this

class the amplifier elements have still been biased close to cut-off like in class B,

but they allow both positive and negative input voltages to be amplified partially

in both amplifier elements. Depending on the amount of mixing, the other half

of the input signal will not be fully amplified because the amplifier element goes

to the cut-off state at some point along the way. This arrangement can be used

to avoid the crossover distortion of class B amplifiers but still take advantage

of the increased dynamic range over the pure class A operation and retain the

distortion cancelling benefits of class B. [97, p. 60] and [19, p. 451]

Figure 7.2 visualises the response of each of the three classes to a sinusoidal input

signal. The black and silver colours refer to push and pull elements separately

to clarify the differences between the operation classes. The other signal (silver

colour) has been deliberately shifted very slightly to the right so that both signals

can be identified during the whole operation cycle.

Class A

Class B

Class AB

amplifier element 1

amplifier element 2

Figure 7.2: Power amplifier operation classes compared
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7.3 Distortion in audio power amplifiers

All amplifiers exhibit various forms of distortion. Especially since the power

amplifier section operates on large signals instead of small signals (the linear

equivalent model), the output stage of a power amplifier is prone to distorting

the signal due to the nonlinear transfer characteristics of transistors and tubes.

The most common distortion mechanisms for amplifiers in general are nonlin-

ear distortion, frequency distortion and delay distortion. The nonlinear distortion

in the forms of harmonic and intermodulation distortion is the most noticeable

source of distortion in power amplifiers. [19, p. 452]

The nonlinear distortion within the amplifying element is the result of rejecting

the inaccurate small-signal assumption that the output plate/collector current io

would depend linearly on the input signal x, i.e. io = Gx, where the parameter

G represents a constant factor. Instead, for large amplitude signals it is more

realistic to assume that the input and output signals are related through the

parabolic equation

io = G1x+G2x
2, (7.1)

where G1 and G2 are general constants that specify the actual shape of the

parabola.

Now, if the input signal is a sinusoid of the form

x = Xm cosωt, (7.2)

a substitution into (7.1) leads to

io = G1Xm cosωt+G2X
2
m cos2 ωt. (7.3)

Application of the trigonometric formula cos2 ωt =
1

2
+

1

2
cos 2ωt to the quadratic

sinusoid reduces the equation to the linear form:

io = B1 cosωt+ B2 cos 2ωt,

where the constants B1 and B2 include all possible constant factors and which

can be evaluated in terms of the G parameters.

The point of all this is to show how extra harmonic frequencies appear in large-

signal amplification applications and that those harmonics can be considered as

noise on top of the original signal. In a general case the large-signal transfer

characteristics of a tube or a transistor should be modelled with a power series

io = G1x+G2x
2 +G3x

3 +G4x
4 + · · ·+GNx

N ,
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which after substituting the cosine input signal from equation (7.2) becomes

io = B1 cosωt+ B2 cos 2ωt+ B3 cos 3ωt+B4 cos 4ωt+ · · · (7.4)

Hmm, it appears that the Fourier series is everywhere. [19, pp. 543 – 549]

The Fourier components Bn in equation (7.4) represent the amplitudes of the out-

put current components. Numerical values for these amplitude components can

be obtained with a method described by Espley [98]. In this method, equidistant

points from the transfer curves are graphically chosen and used to create a set

of equations from where the terms Bn can be solved. However, the use of this

method here is irrelevant since the aim is only to understand the fundamental

sources of harmonic distortion.

From the amplitude terms Bn, the distortion components are evaluated as

D2 =
|B2|
|B1|

, D3 =
|B3|
|B1|

, D4 =
|B4|
|B1|

· · · ,

where the Ds (s = 2, 3, 4, . . .) represents the distortion of the sth harmonic. The

total root-mean-square (RMS) power obtained from the distorted signal is

P = (B2
1 + B2

2 + B2
3 + · · · )RL

2
= (1 +D2

2 +D2
3 + · · · )P1,

where P1 is the power of the undistorted signal and RL represents a load re-

sistance where the power is measured. The total harmonic distortion can be

evaluated as a squared sum of the distortion components

D =
√

D2
2 +D2

3 +D2
4 +D2

5 + · · ·

so that

P = (1 +D2)P1.

As an example, a total distortion of 10 percent (D = 0.1) leads to a total power

of

P = (1 + [0.1]2)P1 = 1.01P1,

which indicates a relatively low impact of harmonic distortion on the total output

power.

Relating to the distortion issues, the reason to favour the push-pull configuration

as the power amplifier output stage construction is the fact that it eliminates a

great deal of harmonic distortion. In the push-pull configuration consisting of

amplification devices Q1 and Q2, an input signal

x1 = Xm cosωt
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delivered to the amplification device identified as Q1 creates an output current

i1 = I0 + B0 + B1 cosωt+ B2 cos 2ωt+ B3 cos 3ωt+ · · · ,

where the harmonic distortion components are present. The push-pull ideology

demands that the input signal or the output signal of Q2 is phase inverted with

the signal of Q1, therefore

i2 = I0 + B0 + B1 cos(ωt+ π) + B2 cos 2(ωt+ π) + · · · ,

which is equal to

i2 = I0 + B0 − B1 cosωt+ B2 cos 2ωt−B3 cos 3ωt+ · · · .

Now that the total output signal is formed as the difference between the output

signals of Q1 and Q2,

io = k(i1 − i2) = 2k(B1 cosωt+ B3 cos 3ωt+ B5 cos 5ωt+ · · · )

with a constant of proportionality k.

The conclusion is that with Q1 and Q2 being identical, a push-pull configuration

will delete all even numbered harmonic distortion components from the output

signal. This is the main reason why almost all audio amplifier output stages are

implemented with the push-pull configuration, usually referring to the use of

class B. But since class B introduces the problem of crossover distortion, class

AB is the most popular output configuration in all audio power amplifiers that

feed signal to loudspeakers.

The harmonic distortion occurred when the input signal was a single sine wave.

Taking the input signal from a guitar when playing chords generates a set of dif-

ferent frequencies that are not integer multiples of each other. When this kind

of signal is substituted into equation (7.1) and the same evaluation is done as

in the case of a single input frequency, the result is an additional set of frequen-

cies, which are sums and differences of the original input frequencies. These

additional non-harmonic frequencies with respect to amplifiers are referred to

as intermodulation distortion. When considering musical signals in general, in-

termodulation distortion is naturally present at all times, but how the amplifier

enhances these distortion components is completely another question.

7.4 Tube amplifiers

As already noted, tubes are the semiconductors of the old days. Tubes come in

different flavours and they are not to be taken only as plain amplification devices.
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The simplest type of a tube is called a diode, and basically its functionality is the

same as for the semiconductor diode. For the tube to act as a semiconductor

transistor replacement, there exist triode and pentode tubes. In the basic oper-

ation mode tubes also need to be heated, so therefore there are two additional

heating wires coming out from all different tube types.

Figure 7.3 illustrates some common tubes and indicates the heater (H) wires in

each type of tube. Normally when drawing schematics for tube circuits the heater

wires are not included in the drawing.

Plate

CathodeH

(a) Diode

Plate

Cathode

Grid

H

(b) Triode

Plate

Cathode

Grid Screen

H

(c) Pentode

Figure 7.3: Common vacuum tube types

7.4.1 The anatomy of different tube types

The tube diode shown in Figure 7.3a consists of two main elements: the cathode

and the plate. If the tube diode is forward-biased, the cathode emits electrons

to the plate, which is kind of a collector of electrons. On the other hand, if the

diode is biased on the negative direction, it prevents the current from flowing.

Therefore, the most common application for the tube diode is to act as a recti-

fier on the power supply circuitry, and similarity to the semiconductor diode is

evident.

The tube triode depicted in Figure 7.3b has the transistor as its semiconductor

relative. The basic construction is the same as in the tube diode, but the third

wire is added to form a so-called control grid. This control grid is located between

the plate and the cathode, making it equivalent to the base of the transistor.

Electrons that flow from the cathode to the plate pass the control grid, which

can therefore be used to control the flow of electrons; this is just what happens

in the semiconductor transistor, but with the exception that the tube triode is

a voltage-controlled device, whereas the basic bipolar junction transistor is a

current-controlled device. In this sense the field-effect transistors as voltage-

controlled current sources are triode equivalents on the semiconductor side.
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The tube pentode adds still two more elements to the tube triode. These el-

ements are called the suppressor grid and the screen grid. Both of these grids

insert themselves between the control grid and the plate. The suppressor grid is

usually connected directly to the cathode, which is the reason for not drawing

the pin extension for it in Figure 7.3c. The suppressor grid and the screen grid

stabilise and increase the gain of the pentode tube and add more high-frequency

functionality by eliminating some excessive capacitance between the tube junc-

tions. There also exists a tetrode tube, which is like the pentode but without the

suppressor grid. Pentodes have displaced the tetrodes as more advanced devices,

but the basic idea of screening is the same in both types.

Pentodes are typically used in radio-frequency and video amplifiers because the

pentode has a relatively good high-frequency response. Pentodes are also used as

audio power amplifiers because they provide higher gain compared to the triode.

[97, pp. 22–28] [19, pp. 160–171]

For analysis and design purposes, the three most important vacuum tube param-

eters are the plate resistance rp, the mutual conductance gm and the amplification

factor µ. These are dependent on each other via equation

µ = rpgm, (7.5)

which is similar to the BJT parameter relation βF = rπgm. [19, p. 164]

The small-signal model of a vacuum tube is typically drawn using a voltage-

controlled voltage source (VCVS), but to be able to use the often more elegant

nodal analysis method, the small-signal model can also be transformed into a

voltage-controlled current source (VCCS). The VCCS representation unifies the

analysis of tube amplifiers and BJT transistor amplifiers in a simple fashion, and

this approach is favored in the following sections. Figure 7.4 shows the voltage-

controlled voltage source and the voltage-controlled current source models ap-

plied for a tube triode element. [19, pp. 188 –196]

The more general small-signal model of a tube also includes capacitances Cgp

between grid and plate, Cgk between grid and cathode and Cpk between plate and

cathode. These capacitances reduce the active bandwidth of the tube amplifier in

the high-frequency range. In audio applications these capacitances are normally

not a problem, so those can be left out from the analysis.

For practical calculations the tube datasheets often provide values for µ, rp and

gm. The data might be given as averaged constant values or in the form of a graph
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(a) VCVS small-signal model
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(b) VCCS small-signal model

Figure 7.4: Low-frequency small-signal models for triode tubes

where the dependencies of the parameter values over the plate current are more

accurately indicated. The value of rp can also be determined analytically from

the biasing currents of the tube circuit under consideration. This is analogous

to the analytic determination of rπ with respect to a certain value of collector

current IC in a BJT amplifier circuit.

7.4.2 A tube preamplifier

Typically the preamplifier stage of a tube guitar amplifier consists of only a single

triode, which is connected in a common-cathode configuration. At this stage

the aim is to maximise the voltage gain, which is achieved by considering the

maximum plate current with the applied operating voltage, and choosing the

plate resistor RL according to that restriction.

A typical preamplifier circuit of a tube amplifier is drawn in Figure 7.5. In this

implementation, a tube of the type 12AX7A is often used because it has a rela-

tively large amplification factor (µ = 100) compared to other similar triodes. In

the amplifier user interface the preamplifier gain is made adjustable by adding

a potentiometer after the output capacitor CL. This potentiometer is labelled as

the ’volume’ control knob in the front panel of the amplifier control board. The

master volume control, on the other hand, is typically linked to the second volt-

age gain stage in the amplifier. A second voltage gain section is needed because

the passive tone control section following the preamplifier usually attenuates the

signal a decent amount.

To get some idea of the gain that a preamplifier stage provides to the signal

coming from the guitar, it is necessary to analyse the transfer function based on

a small-signal model. The preamplifier circuit of Figure 7.5 has a small-signal

equivalent as shown in Figure 7.6. The tube is presented by a voltage-controlled

current source, where the plate resistance rp is used to create the current source
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RG

22 kΩ

1MΩRI

3.3 kΩRK

RL 220 kΩ
CL

0.47µF

CK 4.7µF

VPP

Vout

Vin

Figure 7.5: A simple preamplifier stage

equivalent of the internal model of the tube. This way the small-signal model is

directly compatible with the requirements of the nodal method of analysis and is

in alignment with the transistor amplifier analysis.

RS

Vin

RS

1

RI

2
RG

3

RKCK

4

rp RL

5
CL

gmvgk

+ −vgk

Figure 7.6: The preamplifier small-signal model

The nodal voltage equations can be written down directly as a matrix equation

where on the left side an admittance matrix multiplies a voltage vector equating

to a current vector on the right side. Controlled current sources appear of course

to the current vector, but since the controlled sources normally depend on the

node voltages, terms can (and should) be moved to the admittance matrix before

solving any of the node voltages.

The nodal equations obtained from Figure 7.6 lead to a matrix representation of

equation (7.6), where the controlled current source terms are already transferred

from the current vector to the admittance matrix. This move saves one interme-
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diate step, but for the sake of completeness it breaks the fluent continuity of the

calculation process. To get an idea of all the intermediate steps involved, it is

better to study the previous effects chapter, where all the steps are included in a

similar transistor circuit analysis.
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Vin

RS

0

0

0

0
















. (7.6)

Because of limited space, the non-zero matrix elements in equation (7.6) are in-

dicated with the admittance symbol Y with a subscript that refers to the row and

column index of the specific admittance value. The corresponding admittance

values are referenced in the aligned listing (7.7).

Y11 =
1

RS

+
1

RI

+
1

RG

Y12 = Y21 = − 1

RG

Y22 =
1

RG

Y32 = − µ

rp

Y33 =
1

RK

+
µ+ 1

rp
+ jωCK Y34 = − 1

rp

Y42 =
µ

rp
Y43 = −µ+ 1

rp

Y44 =
1

rp
+

1

RL

+ jωCL Y45 = Y54 = −jωCL

Y55 = jωCL

(7.7)

The matrix equation (7.6) can be solved numerically using Cramer’s rule and

taking e.g. Octave as the number cruncher. For numerical calculations the com-

ponent values are chosen as indicated in Figure 7.5 and the tube parameters are

taken as µ = 100 and rp = 62.5 kΩ, with signal source resistance RS = 100 Ω. In

reality the internal plate resistance rp of the tube depends on the quiescent plate

current, and in this case the true value of the internal resistance has not been

calculated. Normally the resistance rp can be determined graphically from the

characteristic curves of a specific tube given in its datasheet.

With the values mentioned, the gain curve of the preamplifier stage will be
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shaped as shown in Figure 7.7. The −3 dB point of this amplifier, indicating

the low-frequency cut-off, is found to be below 20 Hz, which is a relatively low

frequency in general. From the perspective of the frequency response, the anal-

ysed preamplifier is almost perfect for an audio amplifier. The gain of ≈ 38 dB
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Figure 7.7: Gain curve of the analysed preamplifier

is transformed to decibels from a real multiplier of −77, meaning that after the

preamplifier stage the amplitude of the input signal voltage has been multiplied

by 77 and inverted 180 degrees in phase.

The analysis of the preamplifier did not take notice that there might be several

different input paths to the preamplifier. However, adding several input paths

does not change the setup from the preamp’s point of view. If the amplifier has

two input jacks, they typically have slightly different input impedances to allow

a choice between higher impedance pickups versus lower impedance pickups.

The input impedance arrangement in a tube amplifier might look something like

depicted in Figure 7.8, which defines different resistance values for RI and RG

of the preamplifier depending on which of the two inputs is used.

The arrowheads in Figure 7.8 represent switches, which are normally closed but

open up when a guitar cable plug is attached to the input. If the plug is inserted

into input 1, the 1 MΩ resistor is connected to ground via the switch of input

2. This setup leads to preamplifier circuit resistance values of RI = 68 kΩ and

RG = 68 kΩ. If the plug is connected to input 2, the 68 kΩ resistors are connected
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68 kΩ

68 kΩ

1MΩ

Vout

in1

in2

Figure 7.8: A typical input impedance arrangement in a guitar amplifier

parallel via the switch of input 2. Therefore, RI = 1 MΩ and RG = 34 kΩ in the

preamplifier circuit of Figure 7.5.

7.4.3 A tube amplifier tone control circuit

From the preamplifier stage, the signal is usually directed to a tone control cir-

cuit, which besides tone shaping causes some attenuation of the signal. The tone

control section adds two or three adjustable knobs more to the user interface of

the amplifier. The most needed tone shapers are the bass and treble controls, but

it is also common to have a control knob to the mid-range frequencies.

A typical tone control circuit in a guitar amplifier might look something like the

one shown in Figure 7.9. The actual circuit that gets its input from the preampli-

fier is depicted in Figure 7.9a and Figure 7.9b shows an equivalent circuit ready

for mesh analysis.

At first look, the circuit seems to have three high-pass filters stacked on top of

each other and each capacitor would determine the cut-off frequency for each

filter. The input signal is separated into three different paths, which are then

summed together again with the two potentiometers. However, the idea of three

separate high-pass filters is not the whole truth in this case because all the stacked

sections are interconnected and they cannot be treated independently. A similar

tone control implementation is presented in connection of the solid-state ampli-

fier analysis in section 7.5, but there the separation of signal paths is more clearly

indicated.

As opposed to the more often used nodal analysis, this tone control circuit calls

for the current mesh analysis because the network has much more voltage nodes

than closed current loops. By choosing the mesh analysis, the size of the impedance
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Figure 7.9: A tone control circuit of a guitar amplifier

matrix is reduced from a 6x6 matrix to a 3x3 matrix. The complete matrix equa-

tion derived from circuit 7.9b is













R1 +R21 +R22 +
1

sC1
+

1

sC2
− 1

sC2
−R1

− 1

sC2
R3 +

1

sC2
+

1

sC3
− 1

sC3

−R1 − 1

sC3
R1 +R4 +

1

sC3













×











I1

I2

I3











=











0

0

Vin











,

where the Laplace domain variable s can be directly replaced by jω for simulating

the circuit with a sinusoidal input signal.

From Figure 7.9b it is clear that the output voltage expressed with respect to the

mesh currents is

Vout = R21I1 +R3I2 +R4I3, (7.8)

which means that all the mesh currents need to be solved from the matrix equa-

tion to get an expression for the output voltage Vout. Pen-and-paper calculation

requires a big effort in this case, but it is still manageable. The expressions for

the three mesh currents are

R21I1
Vin

=
(jω)3R1R3R21C1C2C3 + (jω)2R1R21C1(C2 + C3) + jωR21C1

(jω)3A+ (jω)2B + jωD + 1
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for mesh loop 1,

R3I2
Vin

=
(jω)2(R3C1C2(R1 +R21 +R22) +R1R3C1C3) + jωR3(C1 + C2)

(jω)3A+ (jω)2B + jωD + 1

for mesh loop 2 and

R4I3
Vin

=
T

(jω)3A+ (jω)2B + jωD + 1

for mesh loop 3, where the dummy variable T holds the expression

T = (jω)3R3R4C1C2C3(R1 +R21 +R22)+

(jω)2 [(C1C2 + C1C3)R4(R1 +R21 +R22) +R3R4(C2C3 + C1C3)] +

jωR4(C1 + C2 + C3).

The denominator is the same for all of the three mesh equations. The terms A,

B and D in the denominator expression are

A = R3C1C2C3 [R1(R21 +R22) +R4(R1 +R21 +R22)]

B = (C1C2 + C1C3) [R1(R21 +R22) +R4(R1 +R21 +R22) +R1R3] +

R1R3C2C3 + C1C2R3(R21 +R22) +R3R4(C2C3 + C1C3)

D = C1(R21 +R22 +R3 +R4) + C2(R1 +R3 +R4) + C3(R1 +R4).

The output/input voltage ratio can now be calculated as a sum of the mesh cur-

rent expressions as indicated in equation (7.8). The voltage ratio can then be used

to simulate the frequency response of the tone control section and to see how dif-

ferent values in the potentiometers affect the output. The tone control circuit is

analysed here without any connection to the preceding gain stage nor the stages

after the tone control section. This treatment therefore assumes that the output

impedance of the preamplifier stage is very small, and the input impedance of

the following stage is very large, which is usually true at least in the case of the

input impedance of the following stage.

Figure 7.10 depicts some results of the calculations by showing the limiting cases

where the potentiometers are in a maximum or minimum position. The notation

’bass’ in Figure 7.10 indicates that R3 is at maximum and R21 at minimum. The

notation ’treble’ is the opposite of ’bass’, and in the ’middle’ configuration both of

the potentiometers are at maximum.
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Figure 7.10: Limiting cases in the tone control settings

When either the bass control or the treble control are separately at maximum,

the frequency response looks pretty nice. When both potentiometers are at max-

imum resistance, the middle position gets a relatively deep notch around 300 Hz.

It is kind of weird to cancel these frequencies out, but most likely that is the

price that has to be paid to keep the amount of components at minimum in this

implementation.

The output impedance of the tone control section varies as the potentiometers

are turned. Because of the alternating output impedance, it is not advisable to

locate the tone control stage right before the power amplifier stage. The normal

procedure is to include a second gain stage after the tone control to compensate

the slight attenuation due to the passive components in the tone section and to

stabilise the impedance seen by the power amplifier stage. [97, p. 48]

7.4.4 Tube phase splitters

Since there is no pnp/npn variation in tubes, implementation of a push-pull con-

figuration requires that the signal path is split into two phase inverted routes

before the power amplifier stage. With the separated signals it is possible to use

two tubes at the output buffer instead of a single tube and get more signal power

to the loudspeaker. If a guitar amplifier is designed to use only a single tube as a

current buffer before the loudspeaker, this phase splitting stage is not needed.
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There are two common and simple solutions available to implement a phase

splitter circuit with tubes, although the same methods apply equally to transistor-

based designs as well. The simplest phase splitter variant is depicted in Figure

7.11, and it is commonly referred to as the cathodyne (or concertina) phase split-

ter [97, p.49].

RL1 8 kΩ

470 kΩRI

400 ΩRK

C1

C2

C3

VPP

8 kΩRL2

Vin

Vout−

Vout+

Figure 7.11: The cathodyne phase splitter

The small-signal model of the cathodyne phase splitter is depicted in Figure 7.12.

The equivalent circuit is drawn without the DC coupling capacitors C1, C2 and

C3 because the aim of the analysis is to find out the expression for the gain and

identify the actual phase split obtained from this circuit. The resistor RS in the

small-signal model represents the output impedance of the preceding stage.

RS

Vin

RS

1

RI

2

RK

4

RL2

3

rp RL1

gmvgk

+ −vgk

Figure 7.12: The small-signal model of the cathodyne phase splitter
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As was the case with the preamplifier small-signal analysis, the matrix equations

from the small-signal model of Figure 7.12 are one step ahead regarding the in-

termediate steps. Therefore, the controlled current source terms gm(V1−V2) and

−gm(V1 − V2) from rows 2 and 3 are already transferred from the current vector

to the admittance matrix. After this step, the matrix equation of the cathodyne

phase splitter circuit is












Y11 0 0 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 0

Y41 Y42 0 Y44












×












V1

V2

V3

V4












=












Vin

RS

0

0

0












.

The nonzero admittance elements are expanded in the listing (7.9) and these

elements are intended to be substituted into the cathodyne phase splitter admit-

tance matrix presented above.

Y11 =
1

RS

+
1

RI

Y14 = Y41 = − 1

RI

Y21 = − µ

rp
Y22 =

1

RK

+
µ+ 1

rp

Y23 = − 1

rp
Y24 = Y42 = − 1

RK

Y31 =
µ

rp
Y32 = −µ+ 1

rp

Y33 =
1

rp
+

1

RL1

Y44 =
1

RK

+
1

RI

+
1

RL2

(7.9)

Although there is not much theoretical interest towards this simple circuit, the

analytical expression of the transfer function is evaluated here in symbolic form.

The transfer function expressions for the node voltages V2, V3 and V4 indicated

in Figure 7.12 are

V2

Vin

=
RL2(µRI +RL1 + rp + µRK) + µRIRK

Z

for node 2,
V3

Vin

=
−RL1(µRI −RL2)

Z

for node 3 and
V4

Vin

=
RL2(µRI +RL1 + rp + (µ+ 1)RK)

Z
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for node 4. All the transfer functions above share the same impedance expression

Z = RL1(RI +RL2) + rp(RI +RL2) +RS(RL1 + rp +RL2)+

(µ+ 1) (RIRL2 +RK [RI +RL2 +RS])

in the denominator.

Since the denominator is the same for each transfer function, the only difference

in the gain between nodes 2, 3 and 4 comes from the numerator. Clearly, but

surprisingly, the high input impedance RI together with the amplification factor

µ is the dominant term for all nodes. To get equal gain from the plate and the

cathode output nodes, it must hold that RL1 ≈ RL2. The approximate equality

just indicates that there is a very small difference, but in practise it is best to

choose identical values for RL1 and RL2.

The numerical results for the gain of the cathodyne phase splitter with the values

indicated in Figure 7.11 are

V2

Vin

= 0.914 ;
V3

Vin

= −0.869 ;
V4

Vin

= 0.870,

where the averaged values of µ = 100, RS = 100 Ω and rp = 62.5 kΩ have been

used in the numerical evaluation. It should be questioned whether it would be

better to take the non-inverting output from node 4 instead from node 2 because

there the output gain is closer to the gain of node 3. But anyway, the cathodyne

phase splitter does its job and splits the phase with practically equal amplitude.

A minor problem of this solution is that instead of giving some gain to the sig-

nal, the circuit actually attenuates the signal. Because of the attenuation, an

extra gain stage would be needed to compensate the lack of gain. The output

impedances are also different when comparing the plate output and the cathode

output. For these reasons, some better solution should be found to implement a

working phase splitter with decent gain.

The more popular method to construct the phase split functionality is to use a

circuit called the long-tail pair, which besides splitting the phase also provides a

relatively large gain. Figure 7.13 lays down the schematic details of the circuit,

which is basically a textbook example of a basic differential amplifier, but now it

is used by keeping the other input steadily grounded and feeding the input signal

solely from the other input.

This version also includes a feedback input (VFB), which is connected to the

output buffer stage of the amplifier to stabilise the gain performance of the long-

tail pair and the whole power amplifier in general. The feedback resistances RFB1
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and RFB2 have a very small effect on the basic functionality of the long-tail pair

so that they can be neglected when analysing the long-tail pair alone without

feedback. Eventually, when the feedback loop is closed with the output buffer

of the power amplifier, the functionality of the long-tail pair does not change at

all, but the feedback resistors define the gain of the whole power amplifier stage

on which the long-tail pair is acting as the signal input path. This might seem

confusing at first but a detailed explanation is given in the context of solid-state

amplifiers in section 7.5.2.

Vin

470ΩRK1MΩRI1

RL1 82 kΩ

CL1

1MΩRI2

RL2 100 kΩ

CL2

10 kΩRT

VPP

RFB2 5 kΩ

C1

0.022µF

0.1µFC3

RFB1

27 kΩ

C2 0.01µF

VFB

Vout+Vout−

Figure 7.13: A long-tail pair phase splitter

From Figure 7.13 it is impossible to understand why the circuit works as a phase

splitter. At first thought it seems that there are just two common-cathode ampli-

fiers side by side, which would result in inverted output from both sides.

The secret of the long-tail pair is revealed when the circuit is drawn in another

way. Figure 7.14 indicates that the circuit is actually a combination of common-

cathode and common-grid amplifiers. Most of the surrounding components have

been removed from this redrawn version but the essential core functionality is
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still retained with the remaining set of components. The common-cathode sec-

tion produces the phase-inverted output and the common-grid section keeps the

signal in phase.

R′

K = RK +RTRI1

RL1

Vout−

RI2

RL2

Vout+

VPP

Vin

Figure 7.14: The long-tail circuit redrawn as a common-cathode common-grid pair

From Figure 7.14 it is also more convenient to proceed to analysing the small-

signal model of the circuit. The reduction of the component count is done to

keep things relatively simple, to focus on the main idea of the circuit, which is

uneven amplification and phase splitting between the two outputs of the circuit.

It should be noted that the cathode resistance R′
K is now taken as the sum of RK

and RT indicated in Figure 7.13. This is done so that the calculated numerical

results for the gain would be comparable to the gain obtained by Kuehnel [99, p.

96].

Figure 7.15 shows the small-signal model of the reduced version of the long-

tail pair. The grid of the common-cathode configuration is taken as node 1, and

the grid of the common-grid tube is at node 3. The outputs of the common-

grid and common-cathode circuits are nodes 4 and 5 respectively. Although the

circuit was clarified in Figure 7.14 by drawing it as a combination of common-

cathode and common-grid amplifiers, the small-signal model still looks like as if

there would be two common-cathode amplifiers joined together. Maybe it is that

way in reality, because then one could assume that the gain difference would be
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significant between the two outputs.

RS

Vin

RS

1

RI1

2

R′

K

3

RI2

rp2

rp1

4

5

RL2 RL1

gm2vg2k

gm1vg1k

+ − +−

Figure 7.15: The small-signal equivalent circuit of the long-tail pair

The matrix equation (7.10) from the long-tail pair small-signal model is written

directly with the transconductance terms already moved to the admittance ma-

trix and equation (7.5) is used for changing between the transconductance gm

and amplification factor µ. This saves one intermediate step of calculation but

might complicate the understanding of the analysis process.

The nonzero elements of the admittance matrix are marked with their corre-

sponding indices. The aligned listing (7.11) contains the actual terms that should

be substituted into the admittance matrix. Because there is only node linkage be-

tween nodes 2 and 4 plus 2 and 5, there is not that much symmetry in the matrix

elements. After inserting the actual admittance terms from the aligned listing

(7.11), the node voltages V1, . . . , V5 of the matrix equation (7.10) given below are

ready to be solved using Cramer’s rule.















Y11 0 0 0 0

Y21 Y22 Y23 Y24 Y25

0 0 Y33 0 0

0 Y42 Y43 Y44 0

Y51 Y52 0 0 Y55















×















V1

V2

V3

V4

V5















=
















Vin

RS

0

0

0

0
















. (7.10)
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Y11 =
1

RS

+
1

RI1

Y21 = − µ1

rp1

Y22 =
1

R′
K

+
µ1 + 1

rp1
+

µ2 + 1

rp2
Y23 = − µ2

rp2

Y24 = − 1

rp2
Y25 = − 1

rp1

Y33 =
1

RI2

Y42 = −µ2 + 1

rp2

Y43 =
µ2

rp2
Y44 =

1

rp2
+

1

RL2

Y51 =
µ1

rp1
Y52 = −µ1 + 1

rp1

Y55 =
1

rp1
+

1

RL1

(7.11)

After using Cramer’s rule to solve node voltages V4 and V5, which are the non-

inverting and inverting output nodes respectively, the expressions for the gain

factors become

V4

Vin

=

1

RS

R′
KRL2µ1(µ2 + 1)

Z
(7.12)

and

V5

Vin

=

− 1

RS

R′
KRL1µ1(µ2 + 1)

[

1 +
RL2 + rp2
(µ2 + 1)R′

K

]

Z
, (7.13)

where

Z =

(
1

RS

+
1

RI1

)

[RL1RL2 + rp2RL1 + rp1RL2+

rp1rp2 +R′
K(µ1 + 1)(RL2 + rp2) +R′

K(µ2 + 1)(RL1 + rp1)] .

If the transfer functions (7.12) and (7.13) are compared, they have much in com-

mon if symmetry is used for choosing the component values for the redrawn

long-tail pair. To emphasise the symmetry by choosing RL1 = RL2, the gain of

the common-cathode section will be larger by a factor of

1 +
RL2 + rp2
(µ2 + 1)R′

K

.

This gain difference is compensated in practise by choosing the value of RL1 to be

slightly smaller than RL2. It is also evident that as the tail resistance is increased,

the difference in the gain becomes smaller. An infinitely large R′
K would give the

same gain from both outputs with identical plate resistances.
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Because RS is clearly much smaller than RI1, the internal source resistance RS

representing the output resistance of the previous stage will cancel itself out from

the equations and it will not affect the results obtained from the calculations.

If the component values in the reduced model of the long-tail pair are chosen as

R′
K = RK +RT = 10.470 kΩ and

RL1 = RL2 = 100 kΩ ; rp1 = rp2 = 57.7 kΩ ; µ1 = µ2 = 100,

the actual numerical values for the gains at nodes 4 and 5 become

V4

VS

= 29.5 and
V5

VS

= −33.9

and the factor making the common-cathode gain larger has a value 1.15. Kuehnel

[99] had another approach to the gain analysis and he got gain values of 29.9

and −34.3 for the same reduced model, so the results obtained here are nicely in

the same ballpark.

Now the aim would be to equalise the gains from both outputs by reducing the

value of RL1 by 15 percent, which comes directly from the value of the extra gain

factor. The reduced plate resistance RL1 = 87 kΩ, and the numerical values of

the gains are now

V4

VS

= 30.866 and
V5

VS

= −30.858.

This suggests that the value of the factorial can be used to reduce the gain of the

common-cathode stage to be equal with the common-grid stage. Since 87 kΩ is

not a standard resistance value, 82 kΩ is typically chosen as the closest standard

resistance value in the original long-tail pair circuit 7.13.

7.4.5 A tube power amplifier

The power amplifier stage of a tube amplifier can be constructed with a single-

ended one tube setup or a push-pull setup using two matched tubes. Pentode

tubes are preferred over triodes in the power amplifier stage because the pentode

device can provide more gain and it can be used with higher currents than the

triode.

The single-ended construction is used only if the cost of the amplification sys-

tem needs to be minimised. In the single-ended setup the tube is used close

to its maximum ratings regarding the quiescent currents and plate power dissi-

pation capabilities. Figure 7.16 shows an illustration of a typical single-ended
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power amplifier stage using a pentode tube. In this setup, the output signal is

taken from the plate and it is coupled to the load through an impedance match-

ing transformer. The load resistance RL represents the nominal resistance of a

loudspeaker.

Vin

RI

RK

L1 L2

CK

VPP

RS RL

Vout

Figure 7.16: A single-ended tube power amplifier stage

The single-ended output stage works fine if the power demand at the load is not

that high. The problems relating to single-ended output stages are nonlinearities

that lead to harmonic distortion, and obviously one tube can deliver less power

to the loudspeaker compared to two tubes. If a single-ended solution is used,

there is no need to use the phase splitter either because phase split signals are

only required in the double tube push-pull setup. Because the majority of guitar

amplifiers use the push-pull configuration with a pair of output buffer active

elements, the single-ended configuration is not explored any further.

Figure 7.17 shows a typical push-pull power amplifier section of a tube guitar

amplifier with approximate component values. The input signal for the push-

pull power amplifier output buffer comes directly from the long-tail pair phase

splitter (Figure 7.13) through the DC coupling capacitors CL1 and CL2. In some

cases the phase splitting is done with a centre-tapped transformer, but the use

of active element phase splitters such as the long tail-pair is a more elegant and

cheaper solution.

By adjusting the voltage Vbias, the push-pull stage can be biased either in class

B or class AB operation mode. The advantages of using a push-pull stage to
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1.8 kΩRG1

RG2 1.8 kΩ

RI1 220 kΩ

RI2 220 kΩ

Vbias

CL2

0.1 µF

CL1

0.1 µF

V+

V−

RK10 Ω

RL

VFB

VPP
ip1

ip2

Figure 7.17: A push-pull power amplifier stage

couple through a transformer is that the DC biasing currents cancel themselves

out in the primary coil and therefore they do not cause any excess magnetisation

of the iron core of the transformer. Another advantage is that the even harmonic

distortion coefficients cancel out in the push-pull configuration as explained in

section 7.3. The common-mode hum from the power supply is also reduced by

the push-pull stage, but only when the hum is added directly from the operating

voltage of the push-pull tubes. If the earlier voltage amplifier stages have added

power supply hum to the effective signal, then it is not cancelled by the push-pull

setup. [19, p. 560]

The power amplifier section of a guitar amplifier deals with large-amplitude sig-

nals, so therefore small-signal models are not suitable for depicting the behaviour

of the tubes in this amplifier stage. Quite often the power amplifier design and

analysis is done graphically using experimentally determined device output char-

acteristics. The graphical methods are applicable for both DC biasing and AC gain

design.

As explained in section 7.5.2 covering the solid-state version of the power ampli-

fier, the gain of the power amplifier stage is with good approximation determined

by feedback resistors RFB1 and RFB2, which are shown in Figure 7.13. The feed-

back voltage VFB is taken from the loudspeaker input signal as shown in Figure

7.17. The combination of the long-tail pair and the power amplifier stage can

be considered a discrete component version of an operational amplifier where

the closed loop gain is determined solely by external impedances. Because the
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signal after the output transformer is in the same phase as the signal coming to

the long-tail pair, the gain provided by the power amplifier stage is calculated

using the non-inverting op-amp gain formula

G = 1 +
RFB1

RFB2

.

The total gain of the whole guitar amplifier is a sum of the gain from the pream-

plifier plus the gain from the power amplifier. The tone control section causes

some attenuation, which needs to be considered when defining the value for the

total gain.

The tube power amplifier is typically coupled to the loudspeaker via a trans-

former as shown in Figure 7.17. This is done to prevent excess waste of power,

which happens if the DC quiescent plate current flows directly through a low-

ohmic load resistance, as the loudspeaker would be to the plate circuitry. An-

other reason is simply that it is not wise to let the DC component through to the

loudspeaker or any other output device in general. To get the best power transfer

efficiency between the power amplifier and the loudspeaker, the transformer is

also used to achieve the required impedance matching.

An efficient power transfer between circuit stages requires that the output impedance

of the previous stage and the input impedance of the following stage are equal.

With a slight taste of contradiction, audio amplifier designs usually aim to make

the output impedance of the power amplifier as small as possible [100, p. 25].

The reason for this is that with output impedance close to zero, the amplifier

output is unaffected by the loading of the loudspeaker impedance, which is very

nonlinear due to speaker cone resonances and voice coil inductance.

The voltage and current transfer characteristics of an ideal transformer shown in

Figure 7.18 are written as

V1 =
N1

N2

V2 and I1 =
N2

N1

I2, (7.14)

where the subscript 1 refers to the primary coil of the transformer and the sub-

script 2 to the secondary coil of the transformer. The voltage and current are

transformed according to the ratio of the turn counts N1 and N2. The ratio of

voltage and current equations (7.14) yield

V1

I1
=

N2
1

N2
2

V2

I2
,

which can also be written as

Z ′
L =

N2
1

N2
2

ZL,
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where Z ′
L represents the effective input impedance and ZL is the output impedance.

By using a transformer with a different amount of turns on each side, it is possible

to create the required impedance matching.

V1

I1

N1

V2

I2

N2

primary
coil

secondary
coil

iron core

Figure 7.18: A textbook model of an ideal transformer

The actual push-pull power amplifier circuit resembles the long-tail pair circuit,

but now in the power amplifier the differential amplifier construction is actually

used as a real differential amplifier. A simple example of a differential amplifier

with two active inputs and outputs is depicted in Figure 7.19. The amplifier

amplifies the difference Vin1 − Vin2 in such a way that Vout1 gives the inverted

output and Vout2 gives the non-inverted output.

In mathematical terms, without going too deep into the details, the gain proper-

ties of the differential amplifier can be expressed as

Vout1 = −A(Vin1 − Vin2) and Vout2 = +A(Vin1 − Vin2),

where A is referring to some general gain factor.

Because the phase splitter is feeding the signal to the differential stage of the

power amplifier, the input voltage Vin2 = −Vin1, and the difference of these input

voltages is

Vin1 − Vin2 = Vin1 − (−Vin1) = 2Vin1.

Therefore, the power amplifier combines the phase split signal from the long-tail

pair at the input so that the signal is again a replica of the original signal received

from the guitar. But even after the signal recombination at the input of the power

amplifier, the two output paths of the differential power amplifier again cause a

new 180 degree phase shift to the signals that eventually propagate towards the

loudspeaker.
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RKRI1

RL1

RI2

RL2

VPP

Vout2Vout1

Vin1 Vin2

Figure 7.19: A textbook model of a differential amplifier with two inputs

Luckily there is that transformer coupling between the loudspeaker and the

power amplifier. Because the transformer coil is centre-tapped at the power am-

plifier side, the recombination of the differential output signal happens at the

transformer almost automatically. For common-mode signals, the currents in the

two different plate circuits are flowing in opposite directions, and this creates

a magnetic flux to the transformer that in an ideal situation completely cancels

itself out. This is because the centre-tapped primary transformer coil is wound in

the same direction all the way, but the currents are flowing in opposite directions

around the centre-tapped coil in the case of common-mode signals. But since in

this case the effective signal is in a differential mode after the differential ampli-

fier, the current flows in the same direction on both sides of the centre tap, and

this recreates a complete replica of the input signal to the secondary coil of the

transformer. [101, pp. 435–441]

7.5 Transistor amplifiers

Transistor amplifiers are more generally categorised as solid-state amplifiers, be-

cause integrated circuits such as operational amplifiers are often used in modern

guitar amplifier implementations. For the do-it-yourself fanatics, the solid-state

guitar amplifiers are the best first project candidates because they run with rela-

tively low voltages and are therefore safer to build than tube amplifiers. Another
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benefit of solid-state amplifiers is that the full functionality of the amplifier can

be easily simulated by SPICE to ensure the validity of the design. The best way

to learn the basics of solid-state guitar amplifiers is to trace out a full working

solution and analyse it further. For this purpose, a cheap but working Aria AB-

30 50 watt bass amplifier circuit (made in Korea) was traced directly from the

circuit board and drawn into a readable schematic.

After some searches in the wonderful world of the Internet, there seems to be a

Japanese company Aria that mainly makes guitars, but they also have an ampli-

fier called Aria AB-30 in the markets. The Aria AB-30 amp taken to pieces in this

session had been bought from a Finnish music store in January 1993, and it came

with a cheap Fender Precision bass clone manufactured by Washburn. From this

background it is reasonable to suspect that this amplifier is just a cheap clone of

some unknown amplifier. But since it is cheap, it is also simple and therefore a

good candidate for further analysis.

Figure 7.20 shows an illustration of the front panel of the Aria AB-30 amplifier.

This amplifier offers only the most essential control knobs to adjust the volume

and the tone. It does not get simpler than this.

INPUT MASTER TREBLE MIDDLE BASSVOLUME

0

5

100

5

100

5

10 0

5

10 0

5

10
1 2

AB-30
BASS AMPLIFIER

Figure 7.20: The front panel of the Aria AB-30 bass amplifier

In general terms, the upper level block diagram is the same for solid-state guitar

amplifiers as it is for the tube amplifiers. There is a preamp followed by a tone

control section and a second voltage amplifier section. Then the signal goes to

a differential amplifier and finally it reaches the power amplifier section. Most

of the differences between solid-state and tube amplifiers are in the preamplifier

section and in the power amplifier section.

7.5.1 A solid-state preamplifier

As the tube preamplifier uses discrete tubes as the amplifying elements, it is not

convenient to settle for a similar solution in solid-state using discrete transistors

in the preamplifier. The gain is most easily obtained using operational amplifiers

because they are almost ideal amplifier components, and they can offer a large
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gain with relatively small operating voltages.

Typically a dual op-amp IC is used as a connection to the volume and master vol-

ume potentiometers at the user interface side. The first op-amp circuitry takes

care of the prevolume control, and this stage is commonly followed by a tone

control section. After the tone control, the second op-amp circuit handles the

master volume settings and delivers the amplified signal to the differential am-

plifier preceding the power amplifier circuitry.

Figure 7.21 shows the schematic of the whole preamp + tone control section of

the solid-state guitar amplifier under investigation. The component values for

the schematic are listed in Appendix D. The preamplifier stage is quite similar to

the one presented and analysed by Rod Elliott [102].

The connection configuration to obtain different input impedances to the two

input jacks is similar to the input configuration in a tube amplifier. The switches

that open up when a guitar cord is plugged in make sure that the two input

resistors connect in series or in parallel, depending on the input jack used.

Because the op-amps are so ideal devices, there is not that much to analyse in the

preamplifier from the scientific point of view. Transfer functions for both op-amp

sections can be easily derived using the general formula

G = 1 +
ZF

ZG

for the gain of the non-inverting operational amplifier. The term ZF refers to the

feedback impedance that connects the output to the negative input and ZG to the

grounding impedance that connects between the negative input and ground.

For the first op-amp section, the impedance expressions are identified as

ZF =
R103

1 + sC103R103

and ZG =
1

sC105

+R106 +Rv,

where Rv is the resistance of the volume control potentiometer. These impedances

lead to the transfer function

H(s) = 1 +
sC105R103

s2C105C103R103(R106 +Rv) + s(C103R103 + C105[R106 +Rv]) + 1
.

If a sinusoidal signal is used as a test signal, the Laplacian variable s can be

substituted with the complex angular frequency term jω. With this substitution

and evaluation of the transfer function with a range of input frequencies, the fre-

quency response of the first op-amp section with the volume control becomes as

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



7.5 TRANSISTOR AMPLIFIERS 511
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voltage amplifier stage 2

voltage amplifier stage 1

Figure 7.21: The preamp and tone control section of Aria AB-30 bass amplifier

shown in Figure 7.22. The response curves have been drawn for three different

values of the volume control potentiometer to show how the gain depends on

the volume knob settings. Clearly the volume control potentiometer should be

a logarithmic one, since the gain does not change linearly with the potentiome-

ter resistance. Also, the bandwidth of the first preamp stage changes when the

volume control potentiometer is adjusted. Considering the fact that this is a bass

amplifier, the low-frequency cut-off could be a bit lower with full volume, but

then again there might be issues when the amplifier is connected to the loud-

speaker system, which might have some unwanted resonances at those very low
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Figure 7.22: The gain of the first op-amp stage with varying volume control

frequencies.

After the first gain stage comes yet another variation of a very simple tone control

system. This simple tone control setup can be analysed intuitively without too

much details. At the beginning of the tone control stage, the signal is divided to

three different propagation paths, one for high frequencies (treble), one for low

frequencies (bass), and one for all frequencies (middle).

The treble control is a simple voltage divider (or a high-pass filter), where the

high frequencies get more emphasis since the capacitor C108 passes the high fre-

quencies with less attenuation. The bass control works with the same principle,

but in an opposite fashion: the capacitor C203 bypasses the high frequencies to

ground and the low frequencies are passed onwards from the potentiometer. The

middle frequencies are controlled with a simple voltage divider setup and not fil-

tered at all. At the end of the tone control system, the three signal paths are

summed together via the weighting resistors R203, R205 and R206.

The second op-amp section has the same construction as the first one and can

therefore be directly analysed by replacing the component values into the trans-

fer function of the first op-amp section. The replacements lead to the equation

H(s) = 1 +
sC113R112

s2C113C114R112R111 + s(C114R112 + C113R111) + 1
,
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and the visualisation of this equation is presented in Figure 7.23.
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Figure 7.23: The maximum gain obtained from the second op-amp stage (master

volume)

According to Figure 7.23, the bandwidth of this second gain stage is narrowed

down from the first gain stage by increasing the value of C114. Now the problem is

that the high-frequency cut-off comes too early. The tone control section should

not affect the two gain sections because the op-amps isolate the tone control

from the gain control sections.

7.5.2 A solid-state power amplifier

The most common solid-state power amplifier structure follows the so-called

three-stage architecture model [100, p. 32]. In this model the primary circuit

element is a basic differential amplifier, which is followed by a voltage gain stage

and an output buffer stage. For gain and stability purposes, there almost always

exists a negative feedback path from the output buffer to the second input of the

differential amplifier.

The analysis of the power amplifier section can proceed the hard way or through

a shortcut. This time it is better to choose the shortcut, because from there it

is almost too easy to understand the essentials of audio power amplifiers. The

key idea is to think that the whole power amplifier stage is replaced by one op-

erational amplifier. This analogy is justified because the input of the op-amp is
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a differential amplifier and the output is a current buffer just like in the discrete

component power amplifier. The reason for building a power amplifier from dis-

crete components is the need to deliver large currents and maximise heat dissi-

pation. This would not be possible with basic operational amplifier components.

Before digging deeper into the power amplifier schematic, some key ideas need

to be explained using the op-amp as an example. As shown in Figure 7.24, the

op-amp can be used in an open-loop mode and in a feedback mode.

Vin

Vout

(a) Open-loop gain

R1

R2

Vin

Vout

(b) Feedback loop gain

Figure 7.24: Two different use modes of the operational amplifier

The gain of the open-loop mode is huge and depends only on the internal con-

nections inside the op-amp IC. The actual value for the open-loop gain might be

very difficult to determine analytically. The huge gain makes the open-loop mode

very unstable and prone to malfunction.

The gain of the feedback mode is much more stable and it can be determined

solely by the components that make up the (external) feedback loop. There is

a requirement relating to this, and in every case it needs to be checked if the

requirement is fulfilled. To be able to determine the gain accurately using only

the feedback loop, the open-loop gain must be much larger than the feedback

gain. This is almost always true in operational amplifiers, but in power amplifiers

this might not be the case.

To derive the dependency between the feedback gain and the open-loop gain,

one can use the basic inverting op-amp circuit of Figure 7.25 as an example. The

open-loop gain parameter A is identified as the internal gain parameter associ-

ated with the voltage-controlled voltage source of the op-amp.

After the input voltage source and the voltage-controlled voltage source have

been converted to current sources with resistor R1 and internal output resistance
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Figure 7.25: The inverting op-amp and its small-signal model

ro respectively, the small-signal model is represented by the matrix
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×
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 =







Vin
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.

The gain term −Avi
ro

still needs to be transferred from the current vector to the

admittance matrix. Because V1 = vi, the final form of the matrix equation is
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R1

+
1

R2

+
1

ri
− 1
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− 1

R2

+
A

ro

1

R2

+
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ro






×
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Vin
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0




 .

Solving for the node voltage V2, which is the output voltage Vout, yields a frac-

tional gain term

V2

Vin

=
−R2 +

ro
A

R1 +
1

A

(

ro +R1 +R2 +
roR1

ri
+

R1R2

ri

) .
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Clearly, if the open-loop gain A is very large, the solution reduces to the well-

known formula for the gain of the inverting operational amplifier, where the

gain is solely determined by the feedback resistances. But ... if the discrete com-

ponents inside the amplifier block fail to make A large, then the approximation

relying on the feedback gain is not that accurate anymore. This is the dependency

between the open-loop gain and the feedback gain. The general goal in design-

ing robust amplifiers is to get A very high in a certain amplifier block so that a

feedback loop from the output buffer to the input defines the gain according to

the feedback gain approximation.

Now it is the right time to attack the schematics of the Aria AB-30 power ampli-

fier section. This implementation follows the standard three-stage architecture.

Figure 7.26 illustrates the differential amplifier consisting of two identical bipo-

lar junction transistors and also the voltage amplifier block, which consists of

only a single transistor Q104 with a capacitive shunt feedback implemented with

capacitor C122.

Q102 Q103
Vin

18 kΩR12247 kΩR120

R121 4.7 kΩ

2.2 kΩR123

C12022µFVEE

VCC

C118

4.7µF

47 kΩ

R124

C122

22 pF

FB

Q104

C122 22 pF

Vout

Figure 7.26: The differential amplifier with feedback and voltage amplifier sections

The idea with the feedback capacitor is to make use of the Miller theorem (see

section 6.6.4) to stabilise and linearise the frequency response of the amplifier at

high frequencies. The voltage gain stage is also called the transimpedance stage,

which creates a dominant pole in the frequency characteristics of the amplifier.

Since this adds a local negative feedback loop to the circuit, it also affects the
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global negative feedback loop, but mainly outside the audible frequency range.

[100]

The global feedback loop is closed by taking a small part of the output signal to

the differential input stage. If the assumption is made that the total gain provided

by the differential amplifier, voltage gain transistor and the output buffer stage

is high enough to fulfil the requirement of high open-loop gain, the total voltage

gain of the power amplifier at audio frequencies is

G = 1 +
R124

R123

= 1 +
47

2.2
= 22.4 = 27 dB. (7.15)

This result can be easily verified by a SPICE simulation. Using a general transis-

tor model with βF = 100 for each transistor, a 0.1 V input signal to the differential

amplifier gives an output voltage swing of 2.2 V. It is very surprising that the gain

of the relatively complicated power amplifier can be defined so accurately with

only two resistors. However, this approximation can sometimes fail at high fre-

quencies, where the local Miller capacitance feedback makes the global feedback

network somewhat frequency dependent [100]. The output buffer stage that

connects to Figure 7.26 is shown in Figure 7.27.

The gain formula of the non-inverting op-amp is used in equation (7.15), be-

cause the feedback signal taken from the output buffer (Figure 7.27) is in the

same phase as the input signal. The phase differences between the input and

output signals can be determined by following the signal path from the differ-

ential amplifier to the output buffer and by adding up the phase modifications,

which mainly come from the amplifier sections. In a general case for different

power amplifier stages, it is not directly clear which input of the differential am-

plifier is the inverting input because the whole three-sectional architecture has

an effect on this.

The total gain for the whole amplifier can be calculated as a sum of all individual

gains in decibels:

Gtot = GV +GMV +GP = 20 dB + 27 dB + 27 dB = 74 dB.

This corresponds to a multiplier of 5000, which means that an input signal of 0.1

volts would be 500 volts at the output. Is this possible? Of course not. Firstly the

operating voltages limit the output voltage to a certain level, which is normally

less than 30 volts in a typical solid-state guitar amplifier, and signals stronger than

this get clipped. Secondly the input configuration and the tone control section

attenuate the signal significantly so that the gain multiplier drops somewhere
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Q107

Q108

0.5Ω R130

R1310.5Ω

Q105

Q106

R128 220Ω

220ΩR129

D103

D104

270Ω R125

R127

3.3 kΩ

VCC

VEE

R126

2.7 kΩ

100µFC123

fFB

Vin

Vout

RZ

CZ

Figure 7.27: The output buffer stage of the solid-state bass amplifier

around 400. This would still mean that a 0.1 volt input signal with full gain

might drive the output buffer into saturation and distort the sound.

The output buffer shown in Figure 7.27 is implemented as a quasi-complementary

type, which refers to the symmetrical layout of the four output transistors. This

kind of setup defines the power amplifier as a class AB amplifier where the up-

per npn transistors conduct when the signal is over the VBE voltage drop that

forward-biases those transistors. Similarly, the lower pnp transistors start to con-

duct when the signal is below the VBE voltage drop.

To fill the empty gap between +VBE and −VBE, the two diodes have been added

to bias the transistors properly. The diodes lift the potential of the npn transistors

so that when the signal at the pnp transistors’ base pin crosses the −VBE barrier,

the signal at the npn transistors’ base pin crosses the +VBE barrier. This biasing

arrangement avoids the crossover distortion that is typical to class B amplifiers,

although in this specific case the feedback loop is the major solution that also

corrects the problem of crossover distortion.
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In this Aria AB-30 amplifier, there is an extra feedback loop to the pnp transistors

that breaks the symmetry of the system. This feedback loop is not familiar from

the common literature, so the true meaning of C123, R126 and R127 remains a

mystery. At least they do not break the functionality of the amplifier, but there is

a doubt as to whether that extra feedback loop is really necessary.

7.6 Interfacing amplifiers with loudspeakers

As common practise, the output impedance of any solid-state amplifier connect-

ing to moving-coil loudspeakers (see Chapter 8) is designed as low as possible,

ideally zero. This makes the amplifier seem almost like an ideal voltage source

to the loudspeaker so that the amplifier output is unaffected by loading. This

approach tries to linearise the effects of speaker cone resonance and voice coil

inductance by making the loudspeaker impedance variation appear to be small

compared to the internal frequency response variations of the amplifier. The ratio

of output and input impedance can be considered to have a damping factor

DF =
Zout

Zin

, (7.16)

where large damping factors are beneficial to attenuate the loudspeaker imper-

fections in the frequency domain. [100, p. 26]

Due to the very low output impedance of a typical amplifier, it is better to

avoid connecting long cables with significant resistance between an amplifier

and a loudspeaker. From the loudspeaker’s point of view, the cable resistance in-

creases the output impedance of the amplifier and all the benefits of the damping

methodology are easily lost with careless cabling solutions. [103, pp. 166–174]

The implementation method of low output impedance is not ideal when con-

sidering the signal flow (reflections, etc.). The signal flow can be improved

by increasing the amplifier output impedance with a suitable series resistor so

that the amplifier would act more like a current source. This implementation is

not directly compatible with a typical loudspeaker, which is designed to be cou-

pled with a voltage source. The current-drive method also does not reduce the

speaker cone resonances, so additional filters should be added at the amplifier

side to compensate for the loudspeaker nonlinearities. [104]

In addition to the output impedance compensation method, components RZ and

CZ in schematic 7.27 form a so-called Zobel network [100, p. 198] [105, p. 124],

which is intended to compensate for the rising high-frequency impedance of the

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



520 GUITAR AMPLIFIERS

loudspeaker voice coil. The Zobel network is not necessarily required to make

the amplifier work properly, and therefore the existence and meaning of RZ and

CZ is only briefly mentioned in this context.

The situation is different when considering tube amplifiers because it is im-

possible to get a low output impedance from any tube amplifier configuration.

The output impedance of tube amplifiers is scaled lower by connecting a trans-

former between the output tubes of the amplifier and the loudspeaker. How-

ever, the common approach has been to scale the output impedance close to true

impedance matching, which means that the tube amplifiers are not using the

damping factor to compensate for the nonlinearities of the loudspeaker.

7.7 Guitar amplifier simulations with SPICE

At least the transistor based amplifier presented in the previous section can be

fully simulated using SPICE. Only the operational amplifiers might need a specific

model to indicate possible clipping of the signal. For the sake of simplicity, all

the transistors can be modelled as dummy transistor models (only define βF =

100 to the component model) if they are used in the power amplifier, difference

amplifier and the voltage amplifier stages. The use of dummy models is possible

mainly for two reasons: firstly the gain of the power amplifier stage is defined

by the feedback loop and not by the gain of individual transistors, and secondly

because the SPICE parameters do not define the maximum allowed collector

current of the transistors. Therefore, the simulation model does not ’burn’ even

if several amperes are flowing in the output buffer transistors.

As a concrete example, the Aria AB-30 bass amplifier can be drawn to a sin-

gle schematic file with gschem, translated into a netlist file with gnetlist, and

simulated with ngspice. The only things that need to be added manually to the

netlist file are the sub-circuit model for the op-amps and obviously the simulation

parameters for a frequency sweep and transient analysis.

The modelling of tube amplifiers in SPICE is a bit more difficult task for a few

reasons. The primary reason is that the tube needs to be modelled as a general

voltage-controlled current element in SPICE, so a new component model possibly

needs to be created. Secondly, the tube amplifiers use transformers in the power

amplifier stage, which again causes more challenges to the SPICE model. All of

this is of course doable, but it will take some more effort than the modelling of

solid-state amplifiers.
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An approximate SPICE model for vacuum tubes can be created from the empirical

’three-halves-power’ law that imitates the dependency between the plate current

and grid voltage as

iP = gm

(

vG +
vP
µ

)n

, (7.17)

where n usually is very close to
3

2
. In a small-signal mode of operation, the

exponent n would have a value 1, which linearises the plate current equation.

In equation (7.17), gm refers to the transconductance and µ is the amplification

factor so that the quotient
gm
µ

represents the inverse of the dynamically changing

internal plate resistance rp.

A relatively detailed discussion on vacuum tube SPICE models is given by M.

Leach [106], but unfortunately the research paper does not explain the origins

of the model very thoroughly. In the research paper the power law (7.17) is

written in the form

iP = K (µvG + vP )
n , (7.18)

where K is used for denoting the quotient
gm
µ

. The parameters K and µ are used

as basis for the given tube SPICE models. As an example from the research paper,

a triode equivalent SPICE model is shown in Figure 7.28.

P

K

G
G

RGK

1

D1

CGP

CGK

P

GP CPK

K

E1

2

R1

Figure 7.28: A triode on the left and its SPICE equivalent model on the right

The general form of the SPICE netlist corresponding to Figure 7.28 is

* Connections: Plate

* | Grid
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* | | Cathode

* | | |

.SUBCKT TRIODE P G K

E1 2 0 VALUE={V(P,K) + "u"*V(G,K)}

R1 2 0 1.0K

Gp P K VALUE={"K"*(PWR(V(2),1.5) + PWRS(V(2),1.5))/2}

RGK G 1 "Rgk"

D1 1 K DM

.MODEL DM D

CGK G K "Cgk"

CGP G P "Cgp"

CPK P K "Cpk"

.ENDS TRIODE

where Gp and E1 are controlled current and voltage sources as defined by the

SPICE specifications.

The model described by Leach is quite close to the regular small-signal model of

a triode, but with the exception that the effects of the internal variable resistance

rp are ’hidden’ to the separated controlled voltage source circuit. This is because

the value of rp depends on the plate current in each case, and therefore this

arrangement makes it possible to dynamically determine the value of rp from the

plate current.

The website http://tdsl.duncanamps.com/dcigna/tubes/spice/ offers some SPICE

models for the most common tubes, all of which are more or less based on the

model provided in the research paper [106]. As an example, the model for a

12AX7A vacuum tube without the diode branch is

* Connections: Plate

* | Grid

* | | Cathode

* | | |

.SUBCKT 12AX7A P G K

E1 2 0 VALUE={45+V(P,K)+95.43*V(G,K)}

R1 2 0 1.0K

Gp P K VALUE={1.147E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2}

Cgk G K 1.6P

Cgp G P 1.7P

Cpk P K 0.46P

.ENDS 12AX7A

The model seems to be very simple to use, but troubles may arise with different
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SPICE versions because of the use of the nonlinear controlled sources Gp and E1.

This model is intended to be used with PSpice, but for example ngspice uses

a slightly different syntax for the nonlinear dependent sources, so it is advised

to read the SPICE manual first before simulations. The model presented above

does not make use of the diode D1 and resistor R1 presented in Figure 7.28, and

therefore this model is restricted to situations where vgk < 0.

The given model was tested against an example provided in the research paper

[106]. The test circuit is shown in Figure 7.29.

RP
220k

 

 

+
−

V1

DC 180V

Vin

DC 0 AC 1 SIN(0 0.01 440)

2

 

P

K

G XT1

12AX7A

RL
470k

1

0

CK 2.1u

C1 0.006u

RK
3.5k

3 5

4

Figure 7.29: A simple tube amplifier using the 12AX7A vacuum tube

The netlist file created from the schematic 7.29 is given below as a complete

listing including also the simulation control commands. This example introduces

how the nonlinear controlled source expressions in the 12AX7A sub-circuit are

modified to suite the ngspice command structure.

*=========== Begin SPICE simulation control section ==========

.control

ac dec 90 10 10000K
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.endc

*============== Begin SPICE subcircuit definitions ============

.SUBCKT 12AX7A P G K

E1 2 0 vol=’45+V(P,K)+95.43*V(G,K)’

R1 2 0 1.0K

Gp P K cur=’1.147E-6*( V(2)**1.5 + (V(2)**1.5)*V(2)/abs(V(2)) )/2’

Cgk G K 1.6P

Cgp G P 1.7P

Cpk P K 0.46P

.ENDS

*============== Begin SPICE netlist of main design ============

RK 0 4 3.5k

C1 5 3 0.006u

CK 0 4 2.1u

RL 0 5 470k

XT1 3 2 4 12AX7A

Vin 0 2 DC 0 AC 1 SIN(0 0.01 440)

V1 1 0 DC 180V

RP 3 1 220k

.end

The test circuit shown in Figure 7.29 is a very simple amplifier circuit, from

where it is also possible to derive a small-signal model for numerical matrix cal-

culations. The goal is to validate the correctness of the given SPICE model of

12AX7A by comparing the frequency response to results from the numerical cal-

culation based on the general tube small-signal model. Figure 7.30 illustrates the

small difference between the numerical results and the SPICE model simulation.

What is surprising in Figure 7.30 is the very large bandwidth of the frequency

response curve. Many would possibly have made other assumptions on the band-

width of tube amplifiers.

The pentode tube SPICE model is more complex compared to the triode model.

The three-halves-power equation for pentodes is

iP = aK (µcvG + µsvS + vP )
n , (7.19)

for the plate current and

iS = (1− a)K (µcvG + µsvS + vP )
n , (7.20)

for the screen grid current. The parameter a in the previous equations describes

a fraction of the current in the plate. Typically a depends on the voltage ratio
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Figure 7.30: A SPICE simulation versus a manual numerical calculation of 12AX7A

vP
vS

, but for simplicity a can be taken as a constant value for each tube. The two

separate amplification factors µc and µs relate to the control grid and the screen

grid respectively. Typically µs is a lot smaller than µc. [106]

Another example given by Leach is the pentode equivalent SPICE model, which

is shown in Figure 7.31.

P

K

G S G

RGK

1

D1

CGP

CGK

P

S

GP

GK

CPK

K
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2
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3

E2

4

E3

5

R1

Figure 7.31: A pentode on the left and its SPICE equivalent model on the right
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The general form of the SPICE netlist corresponding to Figure 7.28 is

* Connections: Plate

* | Screen

* | | Grid

* | | | Cathode

.SUBCKT PENTODE P S G K

RGK G 1 "Rgk"

D1 1 K DM

.MODEL DM D

ESP 2 0 VALUE={V(P,K) + "us"*V(S,K) + "uc"*V(G,K)}

E1 3 2 VALUE={"K"*(PWR(V(2),1.5) + PWRS(V(2),1.5))/2}

E2 3 4 VALUE={"K"*(PWR("us"*V(S,K),1.5)*V(P,K)/"Va"}

E3 5 4 VALUE={(1 - V(4,2)/ABS(V(4,2) + .001))/2}

R1 2 0 1.0K

Gk S K VALUE={V(3,2)}

Gp P S VALUE={"a"*(V(3,4)*(1-V(5,4)) + V(3,2)*V(5,4)}

CGK G K "Cgk"

CGP G P "Cgp"

CPK P K "Cpk"

.ENDS PENTODE

where Va determines the plate-cathode voltage at the point where the slope of

the curve takes a sharp turn. In this model, the characteristics of a certain tube

are defined by setting values to a, uc, us, K and Va. From the tube datasheets it

might be troublesome to get the correct values for a and Va, so the use of this

model is not that straightforward as the triode model. The pentode model is not

used in this context because the author does not fully understand the pentode

model.

Some predefined pentode models using this approach are given on the website

http://tdsl.duncanamps.com/dcigna/tubes/spice/ and they can be used directly

by assigning the correct pin ordering to the predefined sub-circuit. However,

the presented tube models are not super-accurate since they are based on purely

empirical mathematical models. By using the presented models for the triode

and the pentode, it is possible to execute approximative SPICE simulations for

tube based guitar amplifier circuits.
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Chapter

8

Loudspeakers

The last obstacle in the guitarist’s signal chain is the loudspeaker. Loudspeakers

are responsible for converting the electric signal back to the acoustic domain so

that the notes played on the guitar are actually heard by the audience. Therefore,

loudspeakers are essential devices in the signal chain and they definitely cannot

be bypassed if problems occur. The loudspeaker consists of electrical and me-

chanical interfaces, and additionally an acoustical interface. One can only hope

that the loudspeaker acts as a linear transducer ...

The loudspeaker element used to accompany guitar amplifiers is called a moving-

coil loudspeaker describing the internal construction of the loudspeaker element.

It might be the most common type of a loudspeaker element, because they are

also used with all home entertainment system loudspeakers. The general word

loudspeaker refers to the mechanical loudspeaker element and the acoustical

box surrounding the element. In this context, the focus is on the loudspeaker

element only, neglecting the acoustical effects of the box. In professional terms

the loudspeaker element is called a driver, the flat board where the driver is

mounted is called a baffle and the actual loudspeaker cabinet is referred to as an

enclosure. A loudspeaker system is a combination of driver + baffle or driver +

enclosure [107]. Theoretically the term infinite baffle means a very large baffle,

but in some cases it can also refer to the enclosure cabinet [103, p. 65].

8.1 The construction of a moving-coil loudspeaker element

A sliced model of a complete moving-coil loudspeaker element is visualised in

Figure 8.1, where most of the essential parts of the driver are identified. The

voice coil is swirled between a radial magnet structure and it is also in direct

contact with the speaker cone horn. The speaker cone is connected to a sup-

527
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porting metal structure with elastic joints, which are modelled as springs in this

illustrative sketch. The centre part of the speaker cone is typically protected by a

metallic dust cap.

air vent dust cap

voice coil

speaker cone

suspension mechanism

upper radial magnet

lower radial magnet

Figure 8.1: A sketch of a basic moving-coil driver

The permanent magnets create a radially spreading magnetic field. This mag-

netic field is oriented perpendicularly to the voice coil, which is placed between

the magnets. When current is flowing in the voice coil, a mechanical force is

affecting the coil and since the voice coil is loosely attached, it will move along

with the force. Furthermore, the coil is connected mechanically to the speaker

cone, which will replicate the motion of the voice coil. Eventually the moving

speaker cone interacts with air to create acoustical wave motion.

A good starting point for modelling the loudspeaker element is the interaction
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between the voice coil and the radial magnets. Figure 8.2 shows an idealised

sketch of the coil-magnet system.

~B

θ

R

i

~i

~j

(a) Front view (b) Side view

Figure 8.2: A voice coil in a nonuniform magnetic field

The force affecting the voice coil can be calculated analytically using the vec-

torised equation

~F = i~l × ~B,

which in a differential form is written as

d~F = i d~l × ~B. (8.1)

To calculate the length of the coil under the influence of the magnetic field, the

geometry of the coil can be vectorised with the equation

~l = R cos θ î−R sin θ ĵ,

using the notations given in Figure 8.2. The direction of rotation is defined by

the direction of the current i, which is now chosen to circulate clockwise in the

coil. The differential of the equation of vectorised length evaluates as

d~l = −R sin θ dθ î−R cos θ dθ ĵ,

and the magnetic field can also be expressed using the same angle θ as

~B = B0 cos θ î−B0 sin θ ĵ.

The reason for choosing the signs this way is to get a positive result as the answer,

but basically it is not necessary to start twiddling the signs.
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Now everything is in place to use equation (8.1) to calculate the magnitude and

the direction of the force affecting the voice coil. Solving the cross product

d~l × ~B =










î ĵ k̂

−R sin θ dθ −R cos θ dθ 0

B0 cos θ −B0 sin θ 0










= B0R dθ k̂,

which means that the force will be directed only towards the direction of the unit

vector k̂. The magnitude is obtained by integrating both sides of equation (8.1)

so that the limits in the right integral lead to the real length of the coil:

F = i B0R

N2π∫

0

dθ.

Eventually the most basic form

F = iB0l, (8.2)

is recovered to model the force that affects the voice coil. Using the electrome-

chanical transformation factor N to multiply both sides of equation (8.2), the

relation

v = cB0l (8.3)

between the voltage v and velocity c is obtained. The factor B0l cross-couples

the electromechanical variables in a very evil way, causing lots of harm to main-

taining a robust derivation of the electromechanical model of the driver.

It is better to build the driver model piece by piece and try to explain the details

understandably. The easiest part is to create the electrical model for the voice

coil of the loudspeaker element. Since the voice coil is already an electrical

component, it is easily modelled as an ideal inductor with a resistor representing

the internal resistance of the coil wire.

8.2 Modelling the voice coil

But wait, things are not that easy, because the voice coil is definitely not an

ideal inductor. Even if the resistance of the coil wire is modelled as a separate

ideal resistor R0, which represents the nominal impedance of the driver, it is not

enough to designate the remaining inductance as an ideal inductor [108]. The

presence of strong magnets used in loudspeaker elements makes the inductance
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of the voice coil behave nonlinearly as far as the frequency response is concerned.

Analysis of measurement data obtained from real world drivers has provided an

empirical model for the voice coil equivalent circuit. A suitable equivalent circuit

to simulate the impedance of the voice coil is shown in Figure 8.3.

R0

R

L

Figure 8.3: An empirical voice coil circuit

The total impedance of the equivalent circuit shown in Figure 8.3 is

Z = R0 +
sL

1 +
sL

R

,

which yields a step-like impedance increase defined by the parallel system con-

sisting of a resistor and an inductor.

In reality the impedance of the loudspeaker voice coil increases more steadily

with frequency than one individual step at some specific frequency. Therefore, a

better approximation would be to use several parallel combinations of inductors

and resistors connected in series [104, p. 135]. Figure 8.4 illustrates the ideology

to combine the impedance sections together. The transfer function in this case

would be

Z = R0 +
sL1

1 +
sL1

R1

+
sL2

1 +
sL2

R2

+
sL3

1 +
sL3

R3

.

R0

R1

L1

R2

L2

R3

L3

Figure 8.4: A set of voice coil models connected in series

Each individual parallel impedance block changes the total impedance at a cer-

tain frequency range. If the resistance of the parallel connection is altered, the

step-like impedance variation can be moved in the frequency axis to the desired
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location. As shown in Figure 8.5, increase in the resistor value increases the fre-

quency where the step increase in the total impedance is obtained. Alternatively,

increase in the inductor value gives an increase to the total impedance.
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Figure 8.5: Altering resistance R and inductance L in the parallel configuration

A suitable combination of step increases at certain frequencies builds up an expo-

nentially increasing total impedance as shown in Figure 8.6, where the influence

of three different parallel circuits have been plotted as cumulative curves. The

impedances in Figure 8.6 are

Z1 =
jω180 · 10−6

1 +
jω180 · 10−6

2

; Z2 =
jω100 · 10−6

1 +
jω100 · 10−6

7

; Z3 =
jω60 · 10−6

1 +
jω60 · 10−6

20

.

This possibility to empirically imitate the impedance of any loudspeaker voice

coil is what is obtained by using a chain of parallel connected systems of a resistor

and inductor. To create a specific analytical model for a certain loudspeaker,

some data from impedance measurements are needed. If no measurement data

is available, then using a voice coil model of one inductor with approximate

inductance L is better than nothing.

8.3 Electromechanical analogues revisited

The loudspeaker consists of electrical, mechanical and acoustical interfaces, but

through electromechanical and electroacoustical analogues the whole loudspeaker
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Figure 8.6: Total impedance due to cumulatively added parallel RL blocks

can be modelled by a single electric circuit, which consists of resistors, capaci-

tors, inductors and a signal source. Unfortunately the whole concept of elec-

tromechanical analogues is unclearly explained in related literature; at least the

author has been very confused about connecting a mass-damper-spring system

to a resistor-capacitor-inductor system. This section presents a methodology that

should be easy to understand, but it might be in conflict with standard textbooks.

The main idea in identifying an electrical equivalence of a mechanical quantity

is to find the correct impedance pairs between electrical and mechanical models

and identify the need to use admittance instead of impedance. These equiva-

lences can be approached directly through the electrical circuit theories, which

can be extended to cover mechanical models as well.

Figure 8.7 introduces series- and parallel-connected RLC circuits. Using the no-

tations provided in the figure, the series-connected RLC circuit is represented by

the differential equation

Ls
dis
dt

+Rsis +
1

Cs

∫

is dt = vs.

After applying the Laplace transform, the differential equation is written as
(

sLs +Rs +
1

sCs

)

is = vs, (8.4)

where the three terms inside the parentheses represent impedances from each

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



534 LOUDSPEAKERS

vs

is Rs

Ls

Cs

(a) Series RLC

Lp = Cs Rp =
1

Rs

Cp = Lsip = vs

+

−

vp = is

(b) Parallel RLC

Figure 8.7: Electrical networks representing the duality of impedance and admit-

tance models

individual component. If the units are written open, every impedance term has

the units of ohm. This equation relates the current is with the voltage vs via

the impedance terms. Essentially in this case, the current has been chosen as

the flowing quantity in the circuit, and the current is also the quantity that has

an equal magnitude for all components in the circuit. Circuits of this type are

commonly solved using the mesh analysis method.

If the parallel-connected RLC circuit is analysed, it is obvious to choose the nodal

analysis method, which uses admittances instead of impedances. This follows

from the differential equation

Cp
dvp
dt

+
1

Rp

vp +
1

Lp

∫

vp dt = ip,

where voltage has now taken the place of the flow-type variable. Voltage is

also seen as an equal magnitude by all components in the circuit. The Laplace

transformed differential equation reads

(

sCp +
1

Rp

+
1

sLp

)

vp = ip, (8.5)

where the three terms inside the parentheses represent admittances from each

individual component. The components in the parallel circuit of Figure 8.7 have

been assigned with values which relate them to the series circuit. By substituting
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these values into equation (8.5), an equation identical to (8.4) is obtained. This

explains the concept duality, which at first thought is not that obvious.

The duality of the series and parallel circuits can be examined in a more gen-

eral fashion by rewriting the impedance and admittance terms for the series and

parallel circuits. For the series circuit, the impedance term can be written as

Zi = L

(

s+
R

L
+

1

sLC

)

i = v

and for the parallel circuit the admittance is rewritten as

Y v = C

(

s+
1

RC
+

1

sLC

)

v = i.

When interchanging quantity pairs Z, Y ; C,L ; R,
1

R
and v, i in the equation for

the parallel circuit, the equation of the series circuit is obtained [109, p. 22]. It is

slightly confusing that the sources only change from one quantity to another, but

the magnitude of the changed source remains the same. When a voltage source

is changed to its current source dual, the magnitude is preserved as v = 10 –>

i = 10. This means that the voltage measured in the dual circuit is not the same

voltage after transformation, only the quantity representation of the source is

changed from voltage to current.

For mechanical systems the corresponding Laplace transformed equations are

(

sm+ β +
1

s
k

)

c = F, (8.6)

for impedance representation and

(

s
1

k
+

1

β
+

1

sm

)

F = c, (8.7)

for admittance representation.

Figure 8.8 depicts a mechanical model that represents the response of the speaker

cone to external forces. Mass m represents the mass of the speaker cone and the

spring constant k is related to the compliance of the cone suspension mecha-

nism. The damping coefficient β refers to all factors that resist the motion of the

speaker cone.

The ultimate question is, should this system be modelled as a parallel network

or a series network? In the model described by Figure 8.8, the mechanical com-

ponents of mass, spring and damper seem to be parallel, but in related literature
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massdamper spring
mβ k

force
~F

velocity
c

Figure 8.8: Parallel-connected mass, spring and damper

the system is usually taken to be in series, because velocity is equal for all com-

ponents.

Figure 8.9 shows the dualism in mechanical circuits using electrical components

with the logic that the term with s (derivator) connects to the inductor and
1

s
(integrator) connects to the capacitor. The series system is modelled with

equation (8.6) and the parallel circuit is described with equation (8.7).

Fs

cs βs

ms

ks

(a) Series system

mp =
1

ks
βp =

1

βs

kp =
1

ms
cp = Fs

+

−

Fp = cs

(b) Parallel system

Figure 8.9: Mechanical networks representing the duality of the impedance and

admittance models
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The aim is now to model the mechanical circuit as an electrical equivalent. For

this purpose it is enough to choose either equation (8.6) or (8.7) to represent the

speaker cone and relate that equation to equation (8.4) or (8.5). To acknowledge

common procedures, equation (8.6) is chosen to represent the mechanical circuit.

To build a bridge between force and current as suggested by equation (8.2), it is

natural to choose the parallel electronic model to connect with the mechanical

model. In both equations the source term is on the right side, which are now

related together, implying equality between current and force.

Transformation factors between mechanical and electrical units can be derived

by dividing appropriate impedance and admittance equations together so that

the force-current relationship is recovered. For example, a division of equation

(8.7) by equation (8.4) gives the direct relation

F

i

(

sCp +
1

Rp

+
1

sLp

)

=
c

v

(

sm+ β +
1

s
k

)

B2
0 l

2

(

sCp +
1

Rp

+
1

sLp

)

=

(

sm+ β +
1

s
k

)

between the mechanical and electrical quantities. Equations (8.2) and (8.3) have

been used for digging out the impedance conversion parameter B2
0 l

2. To use

it, just choose the multipliers related to similar powers of s and use the factor

B2
0 l

2 to convert between electrical admittance and mechanical impedance. If the

current term is multiplied to the other side of the equation, it is clear that the

current is directly proportional to the force.

Another useful conversion formula is obtained by multiplying together equations

(8.2) and (8.3), leading to

i =
F

c

v

B2
0 l

2
, (8.8)

which connects the current, force, velocity and voltage together via B2
0 l

2. These

formulae should be enough to describe the mechanical circuit of Figure 8.8 as

an electrical circuit with resistances, inductances and capacitances. The electri-

cal equivalent circuit is shown in Figure 8.10, where electrical admittances are

equivalent to mechanical impedances.

Because the current is a direct replica of the force, it is possible to designate the

physical roles of currents ip1 and ip3 in Figure 8.10. Since force

F1 ∝ k
1

s
c = k

∫

c dt = kx,
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1

sLp

=
k

sB2
0 l

2

1

Rp

=
β

B2
0 l

2
sCp =

sm

B2
0 l

2

ip1 = F1 ip2 = F2 ip3 = F3

ip = F

+

−

vp = c

Figure 8.10: An electrical model for simulating the mechanics of the speaker cone

current ip1 flowing through the inductor is directly related to the displacement of

the speaker cone. Likewise,

F3 ∝ msc = k
d

dt
c = ma,

which makes current ip3 represent the acceleration of the speaker cone. The

acceleration of the cone generates the force which is eventually related to the

acoustic pressure created by the cone movement.

The matter of confusion in this model is related to the mechanical impedances,

because now there is a conflict compared to the parallel presentation of duality

in Figure 8.9b. The impedances and admittances have changed places because

force and velocity are interchanged as the signal source. This confusion is forced

into the model by the transformation factor B0l in a natural way, so it is better

just to accept it and continue the analysis.

8.4 An electrical model of the driver

Using the concepts of ideal electromechanical and mechanoacoustical transform-

ers, it is possible to create a model of the complete loudspeaker element in the

form of an electric circuit. Figure 8.11 reveals the whole electromechanoacous-

tical model of the moving-coil loudspeaker. All components representing any

reactance have been labelled using the Laplace impedance factor s to reflect the

true impedance value of the component. The voltage source V represents the

output of a guitar amplifier while RL and L are a simplified model for the voice

coil. The transformer with the factor B0l is an electromechanical transformer,

which couples the electrical circuit to the mechanical part. The current from the

electrical side is directly coupled to force F on the mechanical side due to the

familiar transformer rule for current

i1 =
1

B0l
i2 ⇒ i2 = F = i1B0l.
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V

RL sL

k

s
β sm

B0l : 1 1 : S

i F = iB0l

c =
F

Z
B0lc = v

+

−

β

S2

F1 F2 F3

F4
p

+

−

+

−

u

Figure 8.11: An electromechanical equivalent circuit of a moving-coil loudspeaker

As the force ’flows’ through the impedances, it builds up as the velocity poten-

tial c. The total impedance Z of the mechanical part is formed by the parallel

connected impedance of mass, mechanical resistance and spring constant. The

explicit expression for the parallel impedance is

Z = β







s
k

β

s2 +
k

β
s+

k

m







,

from where the resonance frequency ω0 and the quality factor Q are identified as
k

m
= ω2

0 and
k

β
=

ω0

Q
. The velocity on the secondary side of the transformer is

coupled to the primary side due to the transformer rule for voltage,

v1 =
B0l

1
v2 ⇒ v1 = B0lc.

The voltage on the primary side is directly proportional to velocity, which justifies

the use of the voltage transformer rule.

The electromotive force created to the voice coil due to the movement of the

speaker cone has a significant impact on the characteristics of the driver. Since

the e.m.f. is created in the opposite direction with the voltage received from the

amplifier, the additional e.m.f. is actually reducing and distorting the voltage

signal obtained from the amplifier.

The second transformer in Figure 8.11 with the factor 1 : S is an mechanoacous-

tical transformer that couples force F to pressure p according to equation

F1 =
S

1
F2 ⇒ F2 = p =

F1

S
.

The factor S is the area of the loudspeaker cone. The use of current transformer

formula is justified, because force is flowing as a current on the primary side of
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the transformer. Since force is related to current, pressure on the secondary side

should also be considered as a current related quantity.

The acoustical impedance relation is similar to the mechanical impedance and

the elementary quantities involved are pressure p, acoustical impedance Za and

volume velocity, which is defined as

u = cS =
FS

Za

=
pS2

Za

.

As a first approximation it is enough to simulate the radiation impedance expe-

rienced by the speaker cone as a pure resistive component.

Figure 8.12 indicates the equivalent circuit of the driver when the electrical

model of the speaker cone and the electrical representation of acoustical impedance

are connected to the voice coil model. The voltage excitation Vin comes directly

to the circuit from the output terminals of a guitar amplifier and the current

i flows through the whole circuit from input to ’ground’. The component val-

R0

Vin

R1

L1

R2

L2

i

LSC
RSC CSC

RA

voice coil

speaker cone

acoustic impedance

Figure 8.12: An electrical model combining the voice coil, speaker cone and acoustic

impedance

ues for the speaker cone model are calculated through the electromechanical

impedance equations shown in Figure 8.10.

To indicate the relatively large variance in the driver impedance at different fre-

quencies, the impedance curve in Figure 8.13 is drawn from the circuit of Figure
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8.12 using the realistic values

R0 = 8Ω R1 = 2Ω R2 = 7.1Ω L1 = 0.18mH

L2 = 0.10mH LSC = 25mH CSC = 240µF RSC = 18Ω.

The air resistance was neglected to indicate how the base level of the impedance
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Figure 8.13: A typical impedance curve for a moving-coil loudspeaker

is created by the nominal voice coil resistance R0. The complete equation to

calculate the total impedance is

Z = R0 +
jωL1

1 +
jωL1

R1

+
jωL2

1 +
jωL2

R1

+RSC






jω
1

RSCCSC

(jω)2 + jω
1

RSCCSC

+
1

LSCCSC




 ,

where the last term describes the impedance of the speaker cone. Using the

standard substitutions of the angular resonance frequency ω0 and the quality

factor Q, the speaker cone impedance

ZSC = RSC






jω
ω0

Q

(jω)2 + jω
ω0

Q
+ ω2

0




 . (8.9)

The quality factor Q and angular resonance frequency ω0 in the impedance ex-

pression have a huge practical significance when measuring the electrical and

mechanical driver properties [107]. A simple measurement procedure to deter-

mine ω0 and Q for any moving-coil driver is described in more detail in section

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



542 LOUDSPEAKERS

8.5. The mechanical resonance peak also gives an indication of the driver’s trans-

fer function properties at low frequencies.

Typically the frequency dependent impedance curve of the driver starts from the

nominal voice coil resistance R0 as shown in Figure 8.13. The resonance peak in

the lower frequencies comes from the speaker cone parameters, and the gradu-

ally ascending tail impedance is due to the varying voice coil impedance. Param-

eters Zmax,
√
r0R0, f0, fl and fh frame the bandwidth inside the resonance area.

These parameters are important when experimentally determining the essential

(Thiele-Small) driver parameters, which are referenced in section 8.5.

Since the impedance of the driver is frequency dependent, it is clear that all fre-

quency components are not reproduced identically by the speaker. The nonlinear

frequency response of the driver can be partially compensated at the amplifier

side using simple filter circuits like the Zobel network. The use of the Zobel net-

work is illustrated in Figure 7.27 and it is used for compensating the nonlineari-

ties of the voice coil inductance by attenuating high frequencies. The resonance

peak of the speaker cone is compensated by keeping the output impedance of the

amplifier as low as possible, since then the relative impedance variations between

the amplifier output and driver input are reduced to some extent. The ratio of the

input impedance of the driver and the output impedance of the amplifier defines

a parameter called the damping factor.

The idea of the damping factor can be examined with an oversimplified example.

The output stage of a typical audio amplifier is connected in a doubled emitter

follower configuration where the driver is connected in parallel with the output

impedance of the amplifier. Figure 8.14 presents a test circuit where the driver

is connected in parallel with the emitter resistor RE of a simple emitter follower

circuit. The low-frequency response of the amplifier section is determined by the

input capacitor C1. The frequency response of the amplifier with the driver input

connected to the node Vout of the amplifier is evaluated with different values of

resistance RE.

The results of the frequency response simulation are shown in Figure 8.15. When

RE is large, the driver impedance in parallel with RE is dominant, because it is

seen as such a small impedance. The effects of the nonlinear impedance of the

driver are clearly visible in the frequency response curve. With a very small

value of RE, the constant emitter resistance is the dominant impedance and the

effects of the nonlinear driver impedance are not seen in the frequency response
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RB250 kΩ RE

Vout

VCC

Figure 8.14: A test circuit to examine the effect of the damping factor

curve. The side effect is that the magnitude of the output voltage Vout measured

at the emitter is attenuated due to the damping factor. By making the amplifier
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Figure 8.15: An example of using the damping factor to linearise the frequency

response of an amplifier with a loudspeaker load

impedance as low as possible, the amplifier is adequate to drive almost all kinds

of loudspeakers with a relatively linear frequency response.

The loudspeaker modelling in this section has only taken account of a loud-

speaker element that is not enclosed in a speaker cabinet. When the loudspeaker
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is placed inside a box, the acoustical properties of the combined system are

changed. This usually affects the impedance curve by moving and reshaping

the area of the resonance peak. Other resonance effects might be added to the

combined frequency response due to the enclosure of the driver. If the driver is

mounted onto a large flat plate (an infinite baffle), the acoustic properties can be

approximately described by a second order high-pass filter function as derived

by Small [107]. This mounting mechanism can be used to reduce the resonance

peak in the transfer characteristics of a loudspeaker element.

8.5 Measuring the essential driver parameters

Based on the impedance expression (8.9) of a moving-coil driver, most of the me-

chanical speaker cone properties can be determined if the resonance frequency

ω0 and the quality factor Q are known. The presented measurement procedure,

as described by Small in reference [107], aims to determine these quantities so

that the obtained results could be used directly in equation (8.9). In addition to

measuring the properties of the speaker cone, the measurements try to estimate

the voice coil inductance.

A simple approach to measuring the frequency response of a driver is to use a

signal generator to provide sine waves of known frequencies and measure the

voltage at the terminals of the voice coil. The driver is intended to be measured

in a free-standing state, so that it should be removed from the speaker cabinet

and the baffle board. The complete measurement setup is shown in Figure 8.16,

where the voltage vg from the signal generator is fed through a 1 kΩ resistor RS

to the driver input terminals. An oscilloscope or a digital volt meter is used for

measuring the voltage vR0 over the voice coil. In this setup the voltage at the

voice coil terminals is directly proportional to the absolute value of the driver

impedance, because the current is kept almost constant with the series resistor

RS. The current is flowing through each component in the circuit can be deter-

mined by measuring voltage vRS over resistor RS and then using Ohm’s law to

calculate the current.

When measuring average size drivers, the resonance frequency is found when

the voltage vRS reaches a minimum value somewhere in the frequency range of

10− 100 Hz. With this in mind, a detailed measurement guide is presented:

1. measure accurate values for resistor RS and voice coil resistance R0 using

a multimeter

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



8.5 MEASURING THE ESSENTIAL DRIVER PARAMETERS 545

1 kΩ

RS

10 Vvg

is

V

vRS

VvR0

Figure 8.16: A measurement setup to determine the driver frequency response

2. by adjusting the frequency of the input voltage vg, find the frequency where

voltage vRS has a minimum value. Write down the resonance frequency as

fr and the voltages vRS and vR0

3. using the values obtained at step 2, calculate current is =
vRS

RS

at the reso-

nance frequency

4. using the value of is obtained from step 3, calculate the loudspeaker impedance

at the resonance frequency as |Zmax| =
vR0

is

5. calculate r0 =
|Zmax|
R0

6. calculate
√
r0R0 to obtain the −3 dB impedance value

7. by adjusting the frequency of the input voltage, identify the −3 dB frequen-

cies fl and fh on both sides of the resonance frequency. Note that for best

accuracy, the measured impedance needs to be evaluated each time as in

steps 3 and 4. Therefore, finding the exact frequencies where the measured

impedance equals
√
r0R0 might take some time.

After the resonance frequency and the −3 dB frequencies are found, it is possible

to calculate the quality factor Q from the measured frequencies. The evaluation

based on the formulae given by Small [107] is surprisingly easy. First evaluate

the mechanical quality factor QMS using equation

QMS =
fs
√
r0

fh − fl

. (8.10)

Then obtain the electrical quality factor from equation

QES =
QMS

r0 − 1
. (8.11)
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With the help of these two quality factor values it is possible to determine the

electrical inductance LCES, capacitance CMES and resistance RES in the speaker

cone equivalent circuit, which are shown as LSC, CSC and RSC in Figure 8.12.

The mechanical and electrical quality factors QMS and QES are also related to the

electrical equivalence components as

QMS = ω0CMESRES and QES = ω0CMESR0.

From here, one can solve

RES =
QMS

QES

R0, (8.12)

and using this resistance value, one can use the relation
ω0

Q
=

1

RC
from the

general parallel resonance circuit to calculate the capacitance

CMES =
QMS

ω0RES

. (8.13)

Note that the mechanical quality factor is used here, because reference [107]

has defined the speaker cone impedance equation (8.9) using QMS as the general

quality factor Q. Finally, the value of the inductance LCES can be solved from the

resonance frequency equation as

LCES =
1

ω2
0CMES

. (8.14)

With these equations, all values of the electrical equivalence components in the

speaker cone resonance circuit can be determined.

To show that the equations really do work accurately, let’s pretend that the

impedance curve in Figure 8.13 is obtained by measurements from a real loud-

speaker element. The impedance values measured from the driver are

|Zmax| = 25.9 Ω and R0 = 8.0 Ω,

so that based on these values, r0 = 3.2375 and
√
r0R0 = 14.4 Ω. The latter value

determines the −3 dB frequencies, which are

fl = 39.6 Hz and fh = 105 Hz,

as shown in Figure 8.13. The resonance frequency at the maximum impedance

is fr = 65.0 Hz.

To find the mechanical quality factor, a substitution of numerical values to equa-

tion (8.10) yields

QMS =
65 Hz ·

√
3.2375

105 Hz − 39.6 Hz
= 1.7883,
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and similarly the electrical quality factor

QES =
1.7883

3.2375− 1
= 0.79924.

Now the resistance RES can be calculated as

RES =
1.7883

0.79924
· 8 Ω = 17.9 Ω,

and finally the values for the capacitance and inductance become

CMES =
1.7883

2 · π · 65 Hz · 17.9 Ω
= 244.6 µF,

and

LCES =
1

(2 · π · 65 Hz)2 · 244.6 µF
= 24.5 mH.

The obtained values are very close to the actual values from where the curve in

Figure 8.13 was drawn.

The mass m, spring constant k and mechanical resistance β of the speaker cone

can be calculated from the electrical values if the force factor B0l is known.

Unfortunately the value for the force factor is usually not known, so more mea-

surements are needed. Small [107] introduces a set of parameters:

• CMS = mechanical compliance of the loudspeaker element

• MMS = mechanical mass of the loudspeaker element

• RMS = mechanical resistance of the loudspeaker element

• CAS = acoustical compliance of the loudspeaker element (= CMSS
2)

• MAS = acoustical mass of the loudspeaker element (=
MMS

S2
)

• RAS = acoustical resistance of the loudspeaker element (=
RMS

S2
)

• VAS = equivalent volume of air of the loudspeaker element

A link between the electrical and acoustical parameters of a driver is created by

expressions of VAS, namely by equations

VAS = ρ0c
2CAS = ρ0c

2CMSS
2 (8.15)

and

VAS = VT

[
fCTQECT

frQES

− 1

]

. (8.16)
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In equation (8.15) ρ0 is the density of air and c is the speed of sound in air. From

these two equations the latter one (8.16) is intended to be used along with the

measurement results to determine an experimental value for VAS. The parameter

VT refers to the net internal volume of a speaker cabinet, meaning that another

identical set of measurements for the loudspeaker element needs to be done

where the driver is mounted in a box which volume is known. When the driver is

placed inside a speaker cabinet, the acoustical frequency response of the cabinet

changes the resonance properties of the stand-alone driver. The parameters fCT

and QECT in equation (8.16) refer to the resonance frequency and the electrical

quality factor measured from the combined system of the driver and the cabinet.

When the value of VAS has been determined experimentally, equation (8.15) can

be used to calculate CMS. Then equation

ω2
0 =

1

CMSMMS

, (8.17)

where ω0 is the resonance angular frequency of the free-standing driver, leads to

the value of MMS, and finally the equation

QES = ω0CMESRE = ω0RE

MMS

B2
0 l

2
(8.18)

reveals the value of the force factor B0l.

Another way to evaluate the mass and compliance of the speaker cone is to in-

crease the mass of the cone in a controlled manner by placing additional mass

(10− 20 grams of blue tack or equivalent) on the speaker cone. Then repeat the

round of measurements to locate the resonance frequency and −3 dB frequen-

cies. The mechanical properties of the cone can be evaluated from the changes

observed in the resonance frequency and the corresponding quality factors due

to the added mass.

The inductance of the speaker coil can be estimated directly from the measure-

ment results. Using the same procedure as shown in Figure 8.16, the impedance

is evaluated in the high-frequency range (> 500 Hz) all the way up to 10 kHz

or even more. Then the impedance curve can be estimated by a chain of par-

allel connected resistor and inductor combinations. Alternatively a single value

for the inductance can be roughly estimated by fitting a straight line on top of

the high-frequency impedance curve and using the basic formula XL = ωL of

reactance to find L.
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Chapter

9

Tuning devices

Before going any further into this topic, it must be emphasised that the best way

to tune any guitar is by ear. To achieve the best results, simply pluck an open

string on the guitar against a reference sound and minimise the beats in the heard

sound. Good sound references are the classic tuning fork, or even the 50/60 Hz

power line hum heard with some cheap amp/loudspeaker cabinets. When one

string is successfully tuned to some external reference, all the other strings can

be tuned against the string that is in tune.

The absolute pitch of instruments is never that meaningful, as the essential thing

is that all the instruments are in tune with each other when playing in a group.

That is another reason why the quickest, easiest and most elegant way to tune is

by ear. The ear is also the final judge of the sensation of in-tunedness, which is

eventually only a subjective matter.

The other approach is to tune a guitar like an engineer, a technology addict who

communicates more fluently with machines than other people. To design a device

that measures the pitch of a played note on the guitar needs all the information

that is covered in the previous chapters of this book. To be consistent with all

the other chapters, the goal is to avoid any digital signal processing. The only

allowed integrated circuit is the operational amplifier.

This chapter introduces a simplified redesign from an analogue guitar tuner cir-

cuit which was patented in the middle of the 1970’s. The aim is mostly to learn

useful things from the field of analogue signal processing and present a simple

approach, which does not guarantee super accurate tuning results in every con-

dition. If one is going to build and use this tuner in practise, it is suggested to

either improve the design or simply buy a cheap (digital) tuner from a music
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store. At least remember that you have been warned.

To fully understand the inner beauty of this basic analogue guitar tuner device,

as a prerequisite it is a must to know how to analyse a bit more complicated

op-amp based filter circuits. In analogue guitar tuners it is usually a necessity to

first filter out most of the upper partials of the string vibration signal to ease out

the frequency detection of the played note.

After a general analysis method for the filters is covered, a useful multivibrator

circuit block is analysed, because it is also later used in the actual tuning device.

9.1 State variable biquad filters

The term biquad comes from a transfer function of the general type

H(s) =
a2s

2 + a1s+ a0
s2 + b1s+ b0

, (9.1)

which is called a biquadratic function since the numerator and the denominator

are both quadratic functions of the Laplacian variable s. This transfer function

can be used for modelling second order low-pass, high-pass, band-pass and notch

filters. The functional forms of these filters are given in Table 9.1, where K

is a constant gain parameter and ω0 defines the centre frequency of the band-

pass filter or the cut-off frequency of the low/high-pass filters. The coefficient

Q is a quality factor, which indicates how sharply the filter defines the transition

between the passband and the stopband. In ideal filters the value of Q is infinitely

large, so the bigger the better is the way to go with this parameter.

Table 9.1: Basic biquad transfer functions

low-pass high-pass band-pass notch

K

s2 +
ω0

Q
s+ ω2

0

Ks2

s2 +
ω0

Q
s+ ω2

0

Ks

s2 +
ω0

Q
s+ ω2

0

K(s2 + ω2
r)

s2 +
ω0

Q
s+ ω2

0

Generally among filter circuits the width of the passband is measured as a differ-

ence of the frequencies at the −3 dB points. In band-pass or notch filters the term
ω0

Q
is directly related to the width of the passband. Therefore, the basic proper-

ties of biquad filters are quite easily determined by examining the coefficients in

the transfer function (9.1).
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One basic building block of the tuning circuit to be presented is a filter section

consisting of three operational amplifiers. This circuit can be used to realise the

transfer functions of low-pass, band-pass and high-pass biquad filters. It would

be possible to build a biquad filter with a much smaller amount of components,

but then the tunability of the filter would not be as good as in the more general

state variable filters. If the tuner is designed to tune all six strings of a guitar,

then it needs to be easily tunable for all corresponding frequencies.

The amplifier stages of filters which consist of several operational amplifiers are

separately connected as simple integrators and inverters. The fundamental idea

can be derived directly from equation (9.1). For example, the low-pass transfer

function

H(s) =
Vout

Vin

=
−a0

s2 + b1s+ b0
can be rearranged as

(s2 + b1s+ b0)Vout = −a0Vin

(

s+ b1 +
b0
s

)

Vout = −a0
s
Vin

(

1 +
b0

s(s+ b1)

)

Vout = − a0
s(s+ b1)

Vin

Vout = − b0
s(s+ b1)

Vout −
a0

s(s+ b1)
Vin.

Furthermore, this can be forced to be written as

Vout = (−1)

(

−K1

s

)[

− K2

s+ b1
Vout −

a0
K1

1

s+ b1
Vin

]

, (9.2)

where a substitution of b0 = K1K2 has been made. [110, pp. 243 – 248]

The basic op-amp blocks can be identified by inspection from equation (9.2).

There is the basic inverter with the factor −1, the block −K1

s
is a basic integra-

tor, and the remaining two terms can also be realised as integrators. The block

diagram of this rearrangement is shown in Figure 9.1.

A circuit that realises the signal flow presented in block diagram 9.1 can now

be constructed. Figure 9.2 presents a typical op-amp filter that is built from

three basic op-amp blocks, which each separately have very basic functionalities

as integrators or inverting gain stages, but together they form a robust filter

with an easily adjustable centre frequency ω0 and quality factor Q. This filter

implementation is also known as the Tow-Thomas biquad filter topology.
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+

Vin Vout

− a0
K1

1

s+ b1
−K1

s
−1

− K2

s+ b1

Figure 9.1: A block diagram of the rearrangement of a biquad function

With reference to Figure 9.1 and equation (9.2), the first op-amp realises the

integrator terms of type − K

s+ b1
, the second op-amp realises the integrator term

of type −K

s
and the third op-amp is just a basic inverter giving the term −1. The

required summation is done at the input of the first operational amplifier using

resistors R4 and R3.

R4

R1

Vin

1

2

C1

R2
3

4

C2

R5
5

R6
6

R3

Figure 9.2: The Tow-Thomas biquad filter topology

If an efficient band-pass filter is going to be used at the input of a guitar tuning

device, the centre frequency of the filter should be easily adjustable to the specific

string to be tuned. In biquad filters that are using the three op-amp construction,

it is usually possible to adjust the centre frequency by changing the value of one

resistor without affecting much the quality factor of the filter.

In addition, the transfer functions of multi op-amp filters are often surprisingly

easy to evaluate directly from the schematics. For example, the circuit of Figure

9.2 can be modelled with the matrix equation
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Y11 −Y12 0 0 0 −Y16

−Y21 Y22 −Y23 0 0 0

0 −Y32 Y33 −Y34 0 0

0 0 −Y43 Y44 −Y45 0

0 0 0 −Y54 Y55 −Y56

−Y61 0 0 0 −Y65 Y66



















×



















V1

V2

V3

V4

V5

V6



















=



















Vin

R4

I1

0

I2

0

I3



















,

where the current terms I1, I2 and I3 refer to the output currents of the oper-

ational amplifiers. The nonzero admittance elements of the matrix are marked

with subscripts, which refer to their location in the admittance matrix in terms

of rows and columns. The listing (9.3) contains the actual admittance terms that

should be substituted into the matrix above.

Y11 =
1

R4

+
1

R1

+
1

R3

+ sC1 Y12 = Y21 =
1

R1

+ sC1

Y22 =
1

R1

+
1

R2

+ sC1 Y23 = Y32 =
1

R2

Y33 =
1

R2

+ sC2 Y34 = Y43 = sC2

Y44 =
1

R5

+ sC2 Y45 = Y54 =
1

R5

Y55 =
1

R5

+
1

R6

Y56 = Y65 =
1

R6

Y66 =
1

R6

+
1

R3

Y61 = Y16 =
1

R3

(9.3)

The reduction rules of the special op-amp nodal analysis can (and must) be ap-

plied to the matrix equation to simplify the calculations and to get correct results.

The basic rules of the op-amp nodal analysis method are given in section 6.9.3.

In the case of ideal operational amplifiers, the node voltages V1 and V3 and V5

are at ground potential, and therefore the respective columns 1, 3 and 5 can be

removed from the admittance matrix. To reshape the matrix to a square, all the

rows that are aligned with the currents I1, I2 and I3 are removed. With these

reductions, the 6x6 admittance matrix is now a 3x3 matrix:
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− 1

R1

− sC1 0 − 1

R3

− 1

R2

−sC2 0

0 − 1

R5

− 1

R6












×











V2

V4

V6











=











Vin

R4

0

0











.

From this matrix it is possible to solve the output voltages of all three op-amps.

Depending on which output of V2, V4 or V6 is chosen, the resulting transfer func-

tion will be in either a low-pass or band-pass filter format. The tuning circuit

takes the output from node 2, which will give the response of the band-pass

filter. In this case, the transfer function

Vout

Vin

=
V2

Vin

=
− 1

R4C1

s

s2 +
1

R1C1

s+
1

R2R3C1C2

R6

R5

. (9.4)

The other transfer functions for this circuit are two low-pass forms,

V4

Vin

=

1

R2R4C1C2

s2 +
1

R1C1

s+
1

R2R3C1C2

R6

R5

and

V6

Vin

=
− 1

R2R4C1C2

R6

R5

s2 +
1

R1C1

s+
1

R2R3C1C2

R6

R5

.

According to the general form of biquad functions shown in Table 9.1, the nomi-

nal angular frequency ω0 for all three filters can be identified as

ω0 =

√

1

R2R3C1C2

R6

R5

,

and the quality factor can be derived from the multiplier of s in the denominator

to yield

Q =

√

C1

R2R3C2

R6

R5

R1,

so that the ratio
ω0

Q
gives the multiplier

1

R1C1

for s.

As a band-pass filter, this circuit provides sharp band-pass filtering with a stable

quality factor for a wide range of values of resistor R2. The procedure for deter-

mining the suitable component values to tune the filter to a certain frequency is
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given in reference [110, p. 250]. By assigning the biquad parameters of equation

(9.4) as

K =
1

R4C1

;
ω0

Q
=

1

R1C1

; ω2
0 =

1

R2R3C1C2

,

the unscaled component values should be chosen according to

C1 = C2 = 1 and R2 = R3 = R

R1 =
Q

ω0

; R =
1

ω0

; R4 =
1

K
.

After the value relations have been determined as indicated above, the actual

impedance scaling to realistic impedance values should be done. The resistors

R5 and R6 should be chosen to be equal, but their values do not depend on the

impedance scaling of the other components.
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Figure 9.3: The frequency response of the resistance adjustable band-pass filter

An example of the frequency response of the filter with a few selected values

of R2 is shown in Figure 9.3. The circuit was initially tuned to have a centre

frequency of 55 Hz, which is the frequency of the open A-string of a bass guitar.

The figure shows that the width of the passband does not change when altering

the value of R2. This means that the centre frequency can be changed while the

other parameters of the filter remain fixed.

Figure 9.4 presents a more versatile three op-amp biquad filter. This filter can

provide low-pass, band-pass and high-pass transfer functions from nodes 3, 5
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and 7. This kind of filter can be referred to as a state variable filter because it

R1

R2

Vin

1

3

2

R7

R3
4

5

C1

R6

R4
6

C2

7

R5

Figure 9.4: An enhanced state variable filter

can be used to construct all the common filter functions without changing the

component configuration of the circuit. The filter of Figure 9.2 could not create

the high-pass transfer function, and therefore it cannot be taken as a true state

variable filter. The circuit in Figure 9.4 can be modelled with the matrix equation






















Y11 0 −Y13 0 0 0 −Y17

0 Y22 0 0 −Y25 0 0

−Y13 0 Y33 −Y34 0 0 0

0 0 −Y43 Y44 −Y45 0 0

0 −Y52 0 −Y54 Y55 −Y56 0

0 0 0 0 −Y65 Y66 −Y67

−Y71 0 0 0 0 −Y76 Y77






















×






















V1

V2

V3

V4

V5

V6

V7






















=























Vin

R1

0

I1

0

I2

0

I3























.

The nonzero elements Yi,j of the admittance matrix are marked with their corre-

sponding indices indicating the row and column. The listing (9.5) contains the

actual terms that should be substituted to the admittance matrix above.
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Y11 =
1

R1

+
1

R2

+
1

R5

Y13 = Y31 =
1

R2

Y22 =
1

R6

+
1

R7

Y25 = Y52 =
1

R6

Y33 =
1

R2

+
1

R3

Y34 = Y43 =
1

R3

Y44 =
1

R3

+ sC1 Y45 = Y54 = sC1

Y55 =
1

R4

+ sC1 Y56 = Y65 =
1

R4

Y66 =
1

R4

+ sC2 Y67 = Y76 = sC2

Y77 =
1

R5

+ sC2 Y71 = Y17 =
1

R5

(9.5)

In the case of ideal operational amplifiers, the node voltages V1 and V2 are at the

same potential, and therefore column 2 can be added to column 1 and column 2

is removed. Also, because V4 and V6 are grounded, the columns multiplying these

voltages can be removed. To reshape the matrix into a square, all the rows that

are aligned with the currents I1, I2 and I3 are removed. With these reductions,

the 7x7 matrix is now a 4x4 matrix:

















1

R1

+
1

R2

+
1

R5

− 1

R2

0 − 1

R5

1

R6

+
1

R7

0 − 1

R6

0

0 − 1

R3

−sC1 0

0 0 − 1

R4

−sC2

















×















V1

V3

V5

V7















=
















Vin

R1

0

0

0
















.

From this matrix equation, one can solve the transfer functions for every op-

amp output node using the Cramer’s rule. The rule leads to an equation having

determinants in the numerator and in the denominator.

After the admittance determinant from the denominator has been written open,

the expression in the denominator for all of the transfer functions becomes

s2
C1C2

R2

(
1

R6

+
1

R7

)

+ s
C2

R3R6

(
1

R1

+
1

R2

+
1

R5

)

+
1

R3R4R5

(
1

R6

+
1

R7

)

.

After solving the numerator determinants and simplifying with the denominator,
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the expressions for the transfer functions are

V7

Vin

=
− 1

C1C2R3R4

R2

R1

s2 + s
R7(R2R5 +R1R5 +R1R2)

C1R1R3R5(R6 +R7)
+

1

C1C2R3R4

R2

R5

for low-pass,

V5

Vin

=
s

1

C1R3

R2

R1

s2 + s
R7(R2R5 +R1R5 +R1R2)

C1R1R3R5(R6 +R7)
+

1

C1C2R3R4

R2

R5

for band-pass, and

V3

Vin

=
−s2

R2

R1

s2 + s
R7(R2R5 +R1R5 +R1R2)

C1R1R3R5(R6 +R7)
+

1

C1C2R3R4

R2

R5

for a high-pass filter.

From the filter functions, the nominal angular frequency ω0 can be identified as

ω0 =

√

1

C1C2R3R4

R2

R5

,

and the quality factor can be derived from the multiplier of s in the denominator

to yield

Q =

√

C1R3R2R5

C2R4

R1(R6 +R7)

R7(R2R5 +R1R5 +R1R2)
.

As the transfer function for this state variable filter is more complicated than

for the Tow-Thomas biquad, it is not easy to give a straightforward procedure

for choosing the component values for certain requirements. The expressions

of nominal angular frequency and the quality factor can be used in numerical

analysis to iterate the component values suitable for one’s needs. One good

initial condition is to choose the capacitances to have value 1 and the resistances

of the integrator to have the same value, which could also be initially set as 1.

9.2 A monostable multivibrator

A multivibrator is a circuit that can be used to generate pulses of different lengths.

If the multivibrator generates a continuous sequence of pulses, it is called an

astable multivibrator. If the multivibrator has two stable states which can be

controlled on and off with external pulses, it is called a bistable multivibrator. A
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monostable multivibrator is categorised somewhere in between the astable and

bistable multivibrators.

The monostable multivibrator has a stable state and an unstable state. When no

external control pulses are provided to the circuit, the circuit rests in its stable

state. Normally this stable state means that the output terminal of the multivibra-

tor is at zero volts. When the external trigger pulse is encountered in the input

terminals of the circuit, the output of the multivibrator switches to the unstable

state, which in terms of digital electronics is usually +5 volts. This unstable state

remains for some predetermined time and then the output returns to the stable

state. This so-called single-shot or one-shot sequence can be repeated after the

stable state has been reached.

The time that the multivibrator spends in the unstable state is commonly con-

trolled by a capacitor charging process, where the time constant of a single RC

stage is used to determine the timings. Figure 9.5 shows the simplest implemen-

tation of a monostable multivibrator with the timing components resistor R and

capacitor C.

Q1

RC1 2.2 kΩ

C

0.047 uF

R 220 kΩ

VCC

Q2

RC2 2.2 kΩ

Vout

47 kΩ

RB1

1 kΩRB2

D1

C1
Vtrig

R1

Figure 9.5: A simple monostable multivibrator circuit

When a battery is connected between the VCC and ground terminals of circuit 9.5,

transistor Q2 is conducting with its base-emitter connection forward-biased. The

transistor Q1 is not conducting because of the voltage divider system of resistors

RC2, RB1 and RB2 provides a base voltage from the collector of Q2, which is at

the ground potential. Obviously the ground voltage is lower than the 0.6 volts
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needed to bias Q1 into the conducting state. Since Q1 is not conducting, the

voltage at its collector approximately equals VCC , and the voltage at the base

of Q2 is equal to the normal base-emitter voltage drop of VBE2. The capacitor

between these terminals is therefore charged through resistor RC1 to a voltage

VCC − VBE2 with a time constant RC1C. This is the stable state of the circuit.

To trigger the unstable state, a short voltage pulse Vtrig is fed to the input terminal

so that VBE1 becomes forward-biased for a short time. This pulls the collector of

Q1 very close to ground and sets the left plate of capacitor C approximately to

zero volts. Since the capacitor in this configuration is initially charged so that its

left side has the positive charge and the right side has the negative charge, the

potential at the base of Q2 drops to a voltage −(VCC − VBE2) and cuts off Q2.

Now the voltage at the collector of Q2 is high enough to keep Q1 forward-biased

through the voltage divider resistors RB1 and RB2. Even if the trigger pulse fades

away rapidly, Q1 is conducting until the voltage at the terminals of capacitor C

has risen just over the base-emitter voltage drop of VBE2 to make Q2 conduct

again. In the unstable state, capacitor C is charged from VCC through resistor R,

and this makes up the time constant RC that defines the unstable operation time

of the circuit. The charging process of the capacitor is a reverse charge, where

the positive charge is transferred from the left capacitor plate to the right side.

During the unstable period, the output signal at the collector of Q2 builds up as

a square wave.

It is important to note that the process cannot be re-triggered instantly after

the unstable period has ended, because the capacitor needs to be fully reverse

charged again to match the stable state. This recovering period is determined by

the time constant RC1C.

The idea of using a capacitor and a diode at the input of the trigger signal is

to get an extremely sharp trigger pulse independent of the actual trigger signal

used. Actually capacitor C1 and resistor R1 put together a high-pass filter which

alters long trigger pulses into sharp spikes. The diode passes only the positive

part of these spikes to the base of transistor Q1.

The semi-analytic derivation for the duration T of the unstable state is relatively

similar to the derivation for the period of the relaxation oscillator in section 6.9.1.

When the start of the unstable state is taken at time t = 0, then the voltage at

the base of transistor Q2 is described with the equation

vBE2(t) = VCC − (2VCC − VBE2)e
−t/RC . (9.6)
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This equation is valid right after the moment transistor Q1 starts to conduct.

Equation (9.6) means that the capacitor is charged from VCC , which would be

the maximum voltage of the fully charged capacitor and that the charging begins

at t = 0 from the voltage

vBE2(0) = VCC − (2VCC − VBE2) = −VCC + VBE2,

which is intuitively true, as it is in agreement with the previous description of the

circuit.

Now to find out the expression for T , all that is needed is to solve it from equation

(9.6) at t = T . At that time Q2 starts to conduct, which requires that vBE2(T ) ≥
VBE2. Therefore,

VBE2 = VCC − (2VCC − VBE2)e
−T/RC ,

and solving for T gives

T = RC ln

(
2VCC − VBE2

VCC − VBE2

)

. (9.7)

For a crude approximation this can be simplified to

T = RC ln 2,

which gives very slighly shorter times than the more accurate formula (9.7).

A simulation of the simple multivibrator results in the waveforms depicted in

Figure 9.6. The capacitor voltage has been measured from the base pin of Q2, so

therefore the maximum voltage is limited to VBE2 and the minimum voltage is

limited to −(VCC − VBE2). The output voltage is taken from the collector of Q2.

The previous example presented a more do-it-yourself way of building a working

multivibrator circuit. If there are no restrictions to using integrated circuits in

the design, then it is better to get a 555-timer IC and add an external capacitor

and resistor to the timer circuit to get better functionality than the discrete com-

ponent version offers. Because the scientific view is appreciated in this context,

the discrete design offers a better platform to understand the inner beauty of

multivibrators.

9.3 An analogue guitar tuning device

The first electronic guitar tuning devices have been designed already in the late

1950’s. At least one implementation has been patented [111] at that time but

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



562 TUNING DEVICES

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

6.0

0 10 20 30 40 50

vo
lt

ag
e

[V
]

time [ms]

VC

Vout

Figure 9.6: The capacitor voltage VC and Vout of the multivibrator circuit

this circuit was intended as a more general frequency measurement device than

a guitar tuner. The idea of modifying a sinusoidal input signal to a square wave

is introduced in this patent and the same method was later used in several com-

mercial guitar tuning devices. One patent application [112] published in later

years is based on the ideas given by [111]. The following discussion gives a short

introduction on the implementation presented in patent [112].

The guitar tuner circuit designed by F. G. Allen [112] can be built as a battery

operated device, which consists solely of discrete analogue components. In this

device the input signal is first band-pass filtered to force the signal to resemble a

pure single-frequency sine wave. After the filtering stage the sine wave is over-

amplified so that it is clipped at the operating voltage limits and therefore shaped

as a square wave. A square wave has much more clearly defined transitions from

a positive pulse to a negative pulse and vice versa, so therefore it is suitable for

determining the exact frequency of the signal.

The rising edge of the square wave signal is used to trigger a monostable multivi-

brator circuit which is tuned to have its unstable ’on’-period approximately equal

to the half-period of the frequency of the note that the selected guitar string is

desired to be tuned to. As the time that is spent at the ’on’-state (TON) stays

constant, the length of the ’off’-state (TOFF ) depends on the period of the string’s

fundamental frequency (TF ) and it is determined as the time difference TF−TON .
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The combination of the rising edge trigger and the fixed time monostable mul-

tivibrator creates a continuous square wave, whose duty cycle varies with the

trigger frequency. The concept of a duty cycle is explained in Figure 9.7.

0

0

0

0 T 2T 3T 4T

A

t

25%

50%

75%

Figure 9.7: A visualisation of square wave duty cycles

The duty cycle of a square wave is defined as the time that the wave spends in

active state during one full period of vibration. The duty cycle is reported as a

fraction of the period T . Figure 9.7 shows three different periodic square wave

signals with duty cycles of 25% 50% and 75%.

As noted, the over-amplification and a triggered monostable multivibrator to-

gether create a more or less unevenly duty cycled square wave from the sinu-

soidal input signal. To convert the actual frequency of the input signal to a

unique voltage value, the duty cycle modified square wave is used to charge a

simple averaging filter, which consists of a combination of a resistor and a capac-

itor. The average voltage level at the capacitor depends linearly on the duty cycle

of the square wave.

Finally, the average voltage level of the capacitor is directed to a differential

amplifier, and the output of this amplifier is used to drive a null meter that shows

whether the played note is in tune or not. The indication is given for both high

and low notes, but due to the filter, the device has clear limits for how much

out-of-tune notes can be accurately detected and tuned to the correct frequency.
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This was the functionality description of the tuner presented in [112]. To learn

more about this tuning method, the original implementation is redesigned in

this context with slight modifications but still using the same basic idea of de-

termining the fundamental frequency of a guitar string from the duty cycle of a

sequence of square pulses.

Figure 9.8 shows the schematic of the redesigned circuit. The implementation

has been designed to tune only the A-string of an electric guitar. The extension

to all six strings can be achieved by adding five resistors to the filter and the mul-

tivibrator and a switch that can switch between these resistors simultaneously.

However, the rationale of this extension should be challenged, since the imple-

mentation requires very accurate resistor values to give good tuning results.

R4

10 kΩ

R1 150 kΩ

Vin

C1 0.047µF

R2

47 kΩ

C2 0.047µF

R5

47 kΩ

R6 47 kΩ

R3

20 kΩ

Q1

RC1 2.2 kΩ

C

0.047 µF

R 150 kΩ

VCC

Q2

RC2 3.9 kΩ

100 kΩ

RB1

1 kΩRB2

DT

CT

RT

Ra 680 kΩ

Ca0.47µF

1 kΩ

VCC

VCC

VCC

VCC

VCC

9V

10 kΩ

10 kΩ

VCC

IC1

IC2

IC3

IC4

IC5

Figure 9.8: A complete circuit diagram of an analogue guitar tuner
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The biggest change compared to the original design is to use a LED to indicate

if the note is too high or too low. In the stable state when there is no signal

coming from the guitar, the LED is lighted to indicate that the power is on. When

a note is played, the LED stays on if the note is too low and turns off if the note

is too high. The tuning is intended to be done by finding the transition frequency

where the LED changes from on to off and the final touch to the tuning is done

so that the tension of the slightly low tuned string is tightened slowly until the

LED is completely off. This is not that user friendly implementation, but it saves

a few components from the design.

After the high level functional description, the next step is to analyse this re-

designed circuit in detail by simulations and actual measurements. At first it

might seem that the voltage averaging method does not appear to be accurate

enough for acceptable tuning. Therefore, the redesigned circuit is just an ex-

ploratory journey to learn about the different building blocks of this circuit and

to see how accurate tuning can actually be accomplished with this approach. An-

other goal of the redesign is to minimise the amount of components to simplify

the original patented circuit, but not necessarily to make it better.

The filter does not require accurate component values, and it can also be used

to amplify the input signal significantly so that even very small amplitude string

vibration will create a signal of a few volts. If the gain of the filter is increased

significantly, some components are already saved in the beginning compared to

the original design.

Figure 9.9 shows the calculated transfer characteristics of the filter with the val-

ues given in schematic 9.8. Theoretically the gain of the filter section reaches

almost 30 dB, which gives a voltage multiplier of 32 to boost the input signal. In

this case the centre frequency is set close to the expected frequency of 110 Hz,

but preferably the centre frequency should stay a little under the expected fre-

quency, because then the filter works better when the string is clearly low from

ideal tuning. A concrete example is that if the centre frequency of the filter was

to be set exactly at 110 Hz (A), then an input signal of 82 Hz (E) would already

let the second harmonic slightly through from the filter and this would affect the

accuracy to detect a significantly low note.

From the filter, the signal is taken directly to yet another op-amp, which is used

as a simple comparator without external resistors, as shown in Figure 9.10. As

the rising or lowering edge of the input signal crosses the reference voltage, the
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Figure 9.9: Gain obtained from the filter section

output of the comparator shoots close to the operating voltage limits. This op-

amp comparator is the key element for creating the sine-to-square conversion.

Vin

Vref

Vout

VCC

VEE

Figure 9.10: Using the operational amplifier as a comparator

A simulation run using the comparator circuit with a sinusoidal input signal gives

almost perfect square pulses as shown in Figure 9.11. Because of the simulation

setup, the input signal starts out with a small transient effect, which attenuates

the amplitude of the first periods of the sine wave. However, the square wave

might not be this ideal in practise, since the square wave output is directed to the

capacitor at the input of the multivibrator, which acts as a load to the comparator

circuit. This capacitive load makes the square wave a bit rounder from the edges.

The reason for using a capacitor at the input of the multivibrator is that it gives a

fast spike trigger instead of the square wave coming from the comparator circuit.

The advantage of this approach is that now the trigger signal never stays in the

high state longer than the pulse provided by the multivibrator.
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Figure 9.11: The simulated input and output waveforms of the comparator

Figure 9.12 illustrates the trigger signal that propagates to the multivibrator.

The simulated measurement has been taken before and after the capacitor CT .

The trigger signal has an upward spike when the comparator shoots high and a
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Figure 9.12: The simulated input and output waveforms of the multivibrator

downward spike when the comparator shoots low. The diode DT is used to filter
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out the negative spikes. Figure 9.12 also shows the output signal obtained from

the collector of Q2 of the multivibrator. An important aspect to notice here is that

the output does not reach the operating voltage but is a few hundred millivolts

short from VCC and ground. This makes things a little more complicated, since

now the circuit cannot be directly configured to be in tune with the average

voltage of VCC/2.

The duty cycle modified output of the multivibrator is taken to a basic integrator

circuit, which calculates the average value of the signal. Figure 9.13 presents

an integrator circuit made purely from passive components. This realisation ef-

fectively does the same job as the alternative version of the integrator using the

op-amp in between the resistor and the capacitor.

R
C

VoutVin

Figure 9.13: A simple RC integrator circuit

The functionality of this critical averaging filter needs to be analysed more care-

fully, since it affects significantly to the accuracy of the frequency detection. The

simulation results of the average voltage measured over the capacitor are illus-

trated in Figures 9.14 and 9.15. In Figure 9.14, square waves with different duty

cycles are driven through the averaging filter and the voltage over the capacitor

is measured. It can be seen that the rise time is relatively long, but the average

value is reached quite accurately in each case.

The amount of ripple and the rise time of the averaged voltage are connected to

each other through the time constant of the RC circuit. Figure 9.15 illustrates

the difference when the time constant of the averaging filter is changed. If the

time constant RC is short, then the rise time is faster but the ripple is larger. For

time constants of longer duration the ripple gets smaller but the rise time leads

to a slower response.

It should be mentioned that the component value of R in the multivibrator needs

to be fine-tuned experimentally, since the period of the unstable state of the mul-

tivibrator does not necessarily directly relate to the target frequency of tuning.

This obviously depends on the chosen reference voltage used in the final com-

parator after the voltage averaging. Furthermore, the fact that the output square
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Figure 9.14: Average voltages from different duty cycles
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Figure 9.15: Average fluctuation with different resistance values

wave from the multivibrator does not quite reach the limits set by the operat-

ing voltages affects the need to adjust R. The need of initial manual tuning of

the built tuner circuit itself definitely needs to be considered when building this

device.
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9.4 Measurements on the tuning circuit

The prototype of the tuning circuit was built onto a solderless breadboard using

the uA741 op-amp as a quad LM348 and a single ICs. The possibility to use

uA741 indicates that all available op-amp types can be used to realise this circuit.

The transistors used in the multivibrator circuit are of the basic 2N3904 type.

The capacitors were normal ceramic capacitors and the resistors were typical

carbon composition resistors with a 5% − 10% tolerance. For better accuracy it

is advised to use metal film resistors and capacitors in analogue filters and other

timing related circuits.

One of the few things that could not be easily simulated with SPICE was the

functionality of the filter with signals that have a large amount of upper partials.

Figure 9.16 shows that in the vicinity of the centre frequency the filter performs

a perfect cut-off for the overtones.
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Figure 9.16: Performance of the real-world filter

Although the performance of the filter seems perfect in this figure, the reality of

the tuning situation is that the string to be tuned might have a very low frequency

compared to the target frequency of tuning. In these cases it is clear that the filter

lets a few of the first upper partials through and this usually gives false triggering

to the multivibrator in the middle of the fundamental period. To avoid this case,
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it would be better to design the centre frequency of the filter a little bit lower

than the target frequency.

The gain of the filter can be estimated from the figure to be about 50 (= 4/0.08),

which is about 34 decibels. This is a bit more than the simulations predicted in

Figure 9.9, but this difference is mainly due to the fact that the resistance R4

used in the measured circuit was lower than the simulated 10 kΩ resistor to get

some extra gain out of the filter circuit.

The next step was to verify the square shaping properties of the comparator stage

IC4. Figure 9.17 indicates that the measured square wave is a bit more rounded

from the corners than the simulations predicted. Still the shape of the square

wave is not important in this stage of the circuit, but only the sharpness of the

rising edge is meaningful to give an exactly timed trigger for the multivibrator

stage. It is not critical if the peak-to-peak voltage does not reach the limits of op-

eration voltages at this stage. Therefore, it is possible to use any readily available

op-amp model as IC4.
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Figure 9.17: The input and output waveforms of the comparator stage

Figure 9.18 shows how the voltage at the input and output of the trigger capac-

itor looks like. The positive-going spike is aligned with the rising edge of the

comparator output signal and the negative-going spike of the trigger capacitor is
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aligned with the falling edge of the comparator output. The positive trigger pulse

rises only just below two volts because of the loading effect of the multivibrator

stage. Still, the two volts are clearly enough to trigger the multivibrator, since it

is only necessary to exceed the VBE potential drop of the transistor to be able to

successfully trigger the monostable state.
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Figure 9.18: The voltage waveform over the multivibrator input capacitor

When the multivibrator is triggered to the unstable state, the voltage over the

timing capacitor C drops close to −VCC and starts to charge towards VCC . The

relation of the timing capacitor voltage VC and the output voltage Vout of the

multivibrator is visualised in Figure 9.19.

It is already clear that the multivibrator output voltage cannot reach the operat-

ing voltages, but it can be adjusted closer by making RC2 smaller within certain

limits. If the value of RC2 is taken too small, then it starts to affect the loading

time of the timing capacitor C and this is certainly not good.

If there is a real need to get the voltage before the averaging filter closer to

the operating voltages, then it is better to add one switching transistor after the

output of the multivibrator. Even this addition will not get the voltage swing

exactly to the rails because of the excess 0.2 V voltage drop of a BJT transistor

in the saturation mode. Although the switching transistor could increase the
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Figure 9.19: The capacitor voltage and the output voltage of the multivibrator

performance of the tuner, it is not added to this solution because of the need to

minimise the amount of components.

The final stage of the measurement session was to investigate the voltage wave-

form between the averaging filter output and the comparator input. The aver-

aged voltage was measured along with the comparator reference voltage from

the inputs of the final comparator stage. Figure 9.20 shows two different time

captures from both of the inputs measured together.

The upper half of Figure 9.20 shows a still-capture right after the string has

been plugged. As expected, the averaged voltage has a steady ripple due to

the capacitor charging process. The unexpected thing is that the amplitude of

the guitar signal at the filter is so strong that it seems to leak from the common

ground point to the reference voltage. The lower half visualises the capture a few

seconds after the pluck. At that time the disturbances at the reference voltage

have attenuated, but the noise is still larger than the expected symmetric ripple

in the averaged voltage.

The measurement results indicating the fluctuating reference level reveal yet an-

other vulnerability in the circuit design. To overcome this issue and to get the
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Figure 9.20: The averaged voltage and reference voltage during the tuning process

reference voltage more stable, a more robust way of creating the reference volt-

age to the circuit should be implemented. Clearly the simple voltage divider trick

with two resistors is not adequate in this situation.

In the original patent [112], it is claimed that the tuning result is independent of

the operating voltage VCC . This is basically true if a switching transistor is used

to ensure that the squared waveform to the averaging circuit has a peak-to-peak

voltage range that equals VCC . Then the threshold level to indicate correct tuning

and the averaged train of square pulses are both defined via the same voltage.

This ensures that changes in the operating voltage alter the threshold and the

peak-to-peak voltage with the same fractional amount.

The operating voltage also has a significant effect on the timing periods of the

monostable multivibrator. Commercial multivibrator ICs, such as the 555-timer

IC, are guaranteed to create constant timing intervals independent of the operat-

ing voltage. However, in this particular redesign, the timing period of the naively

simple multivibrator solution depends on the operating voltage, as clearly indi-

cated by equation (9.7). This dependency on the operating voltage leads to the

data presented in Table 9.2.
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Table 9.2: Tuning results with different operating voltages

VCC = 9.5 V VCC = 8.0 V VCC = 7.0 V

110.5 Hz 109.9 Hz 109.2 Hz

The tuning reliability was investigated using three different 9 volt batteries, one

very old and used battery (7.0 V), a sparingly used battery (8.0 V) and a com-

pletely new battery (9.5 V). The variation in the tuning result is basically not

that severe, but the differences in the frequencies can be heard by ear. This is

definitely not acceptable.

Prior to identifying the problems relating to the operating voltage level, the in-

constant tuning results were suspected to arise from the fact that the multivibra-

tor does not provide an output signal that would reach from zero volts to VCC .

The output voltage swing is left short from the rails mainly due to the 3.9 kΩ re-

sistor RC2. This problem was tried to be corrected by a simple transistor switch,

which is drawn in Figure 9.21. The base resistance RB of the switch needs to be

determined so that the base gets enough current to fully saturate the transistor

when the input signal is high. When the input signal is low, the transistor goes

to the cut-off state and the resistance of RC should be relatively small to prevent

any unnecessary voltage drop due to possible excess current flow at the collector.

As a general note, the switch inverts the output signal of the multivibrator. If the

transistor switch is used, the input to the comparator IC5 should be changed to

the non-inverting pin (+), and the inverting pin (−) should be grounded.

RB

6.8 kΩ

RC 1 kΩ

VCC

Vin

Vout

Figure 9.21: Using a bipolar junction transistor as a simple switch
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By using the transistor switch it is possible to get a square wave ranging very

close to the operating voltages, but still a BJT transistor normally has about a

0.2 volt drop across it in saturation. Making RC smaller than 1 kΩ seemed to

be a bad choice in the actual circuit, because then the circuit was taking too

much current from the battery. When using the weakest battery, the high current

consumption lead to an additional drop of VCC when the switching transistor

was in saturation. For similar reasons it was not possible to make RC2 in the

multivibrator output smaller than 3.9 kΩ, because when tried, it lead to obscure

transient effects in the capacitor charging process and caused a noticeable timing

error.

After adding the switching transistor between the multivibrator and the averag-

ing filter in the redesigned circuit, the problem of VCC dependent tuning results

did not vanish. Therefore, the next guilty component under suspicion was the

multivibrator, and indeed when inserting actual values into equation (9.7), the

timing period grows slightly as the operating voltage is decreased. This increase

in the timing period leads to a small increase in the duty cycle, and this slightly

increases the averaged voltage. This way the lowered operating voltage causes

the slightly raised averaged voltage, which switches the state of the comparator

sooner than expected. Most likely the use of a commercial timer IC as the multi-

vibrator would solve this issue and the tuner would be more stable, accurate and

most of all more usable.

If a sequential tuning is performed over a short time period and the tuning is

always performed by tightening the string until the LED goes off, then the prac-

tical accuracy of this tuner can reach something like ±0.5 Hz for a 110 Hz target

frequency. To be on the safe side, a maximum error of ±1 Hz is more reasonable

in normal tuning. The absolute value of the error grows if the target frequency

is raised, but the relative error stays approximately constant.

In the enhanced version of this analogue tuning device, the signal leakage to

ground should be prevented and a more accurate comparator solution to the last

section of the tuner should be developed. With these corrections the tuner could

compete in accuracy with the commercially available digital guitar tuners.

9.5 The Strobotuner

The main idea of the Strobotuner is to visually indicate the correct tuning by

controlling flashing light bulbs with the signal of the device to be tuned and syn-
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chronously rotating a motor at user-chosen speed. The speed of motor rotation

is related to the reference frequency of the tuned note. The motor is spinning a

disk that lets the light through it at the chosen frequency, and the flashing lights

behind the disk go on and off at the rate determined by the fundamental fre-

quency of the instrument. The sound of the instrument is sensed by recording

the sound via a microphone.

The phenomenon behind the idea of the Strobotuner is familiar, for example,

from old cowboy movies, where the wheels of a moving wagon suddenly stop

rotating when the speed of rotation and the frame rate of the film are ’in tune’.

When the instrument is in tune, the stroboscopic effect in the tuner shows a

semicircle of motionless lines around the disc. If the tone is sharp, the lines will

appear to revolve to the right or clockwise. If the tone is flat, the lines in the disc

will appear to rotate to the left or counter-clockwise.

5 4 3 2 1

Figure 9.22: The rotating disk of the Strobotuner

The geometrically interesting disk of the Strobotuner is depicted in Figure 9.22

and it is the part of the device that makes it all happen. As the disk rotates, the
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lights flicker at a certain frequency, and when the rotation speed of the disk and

the flickering speed of the lights are in tune, the instrument is in tune as well. The

figure shows only five octave bands on the disk because of drawing limitations,

but the original Strobotuner is designed for eight octave bands, which can be

extended even up to ten octaves with a special switch.

Figure 9.23 reveals the user interface of the Strobotuner. The sound from the

instrument to be tuned is recorded by a microphone attached to ’mic in’. The

sensitivity of the microphone can be controlled by the ’gain’ potentiometer. The

gain should be adjusted high enough to clearly see the illumination of the lights

behind the strobodisk when a note is played from the instrument.

5 4 3 2 1 3 4 5 6 7

NORMAL +2

FLAT SHARP

SELECTOR CENTS

FUNCTIONGAIN

MIC IN
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40 40

50 50

C

B

E

F

cal.       normal
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Figure 9.23: The front panel of the Strobotuner device
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The main mode of operation is chosen from the ’function’ switch. The calibration

mode is used prior to the actual tuning to ensure that the device is working as

intended in a specific tuning environment. The need to change the calibration

mainly arises from ambient temperature changes, because the ambient temper-

ature affects both the tuning device and the instrument to be tuned. The ’cents’

switch is used in the calibration phase to make fine adjustments so that the cali-

bration signal appears to be in tune in the specific tuning environment. After the

calibration, the ’cents’ switch is not adjusted during the actual tuning process.

The actual tuning is done in the ’normal’ mode and extended range tuning can be

performed in the ’+2’ mode. The extended range offers the possibility to expand

the octave range of the Strobotuner to two octaves higher, so ultimately the eight

octave range can be expanded as a ten octave range.

In the ’normal’ mode, the user can choose the note to be tuned from the ’selector’

switch. The selector switch is shown in full detail in Figure 9.24.
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Figure 9.24: Selecting the tuned note from the selector switch

For tuning guitars or basses to normal tuning, the selector switch should be po-

sitioned so that the note to be tuned (marked at the rotating selector switch) is

aligned with the letter C that is stationarily marked on the front panel. Figure

9.24a shows the selector switch when tuning to note C in the normal scale and

Figure 9.24b indicates the positioning of the selector switch when tuning to note

E in the normal scale.

Typically the majority of instruments are tuned using the C alignment, which can

be considered the normal tuning. An instrument that uses a C tuning plays out
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a frequency that is the same as the standard definition of the note C frequency.

A guitar is definitely a C instrument, also referred to as a non-transposing instru-

ment.

Some instruments require special tunings and typically these are called trans-

posing instruments. If a special tuning is needed, then the selector switch can

be aligned with the three other possibilities Bb, Eb or F . This way the selec-

tor switch can be used to transpose different instruments to the required special

tuning by aligning the tuned note to F , for example, instead of the typical C.

The instruments that normally require transpositions include the wind instru-

ments, which do not produce the same pitch that is read from the staff. A regu-

lar clarinet is a transposing instrument of Bb, which means that if the C note is

played with a clarinet, it would sound like Bb. This is why clarinet players cannot

read the same notes as guitarists if they want to play in the same tune together.

[113]

The Strobotuner is another example of an analogue tuning device that cleverly

makes use of controlling the rotation speed of an electric motor at a certain

angular frequency to generate a reference for the tuned note. A clear visual

indication using flashing lights is given to the user to verify the status of tuning.

If someone has interests towards the detailed implementation of the Strobotuner,

the circuit diagram of the device and other fun facts are given in the Strobotuner

user manual [113].

9.6 Automatic tuning systems for guitars

This section includes a few hand waving notes and remarks about some of the

commercially available self-tuning guitars. The technology behind these gadgets

is described without detailed mathematical analysis because the systems rely

solely on digital signal processing - the only feasible way to create a system that

actually works fast and accurately.

At the time of writing, there are two elegant systems in the markets that automat-

ically tune all strings at once with one strum of the strings. The more obvious

implementation is the ’Robot Guitar’, where small motors are used for turning

the tuning pegs while a separate microprocessor is analysing the fundamental

frequencies of each string and controlling the motors accordingly. The other so-

lution extends the ’Autotune’ technology from vocal pitch corrections to guitar
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string pitch correction without mechanically tuning the strings.

To tune all strings at the same time reliably requires a separate sensor to measure

the fundamental frequency for each string. The ’Robot Guitar’ uses six individual

piezoelectric transducers for each string. The piezosensors are used as the sad-

dle, just like described in section 3.4.4 concerning the measurements of a piezo-

electric pickup. This implementation allows the guitar to have normal magnetic

pickups, and it does not interfere with the actual electromechanical behaviour of

the guitar in any way.

The ’Autotune’ guitar uses a hex-pickup in place of normal magnetic pickups. The

hex-pickups are also designed to sense each string individually, and they have

been earlier used in some MIDI-guitar applications. The downside of this solution

is that the hex-pickup cannot be replaced by standard single-coil or humbucker

pickups, which clearly restricts the freedom of making do-it-yourself mods to the

guitar later on.

A crude block diagram for an automatic guitar tuning system would contain only

two blocks, one for determining the frequency of a string and the other one for

controlling the specific actuator that corrects the tuning.

In both implementations, the ’Robot Guitar’ and the ’Autotune’, the fundamental

frequencies of the strings are determined using fragments of code that handle

the audio signal post processing in the digital domain. If the signal has even a

slight tendency for periodicity, an autocorrelation calculation can be used to de-

termine the fundamental frequency of the signal. The autocorrelation (or cross-

correlation) function is normally used to determine a delay between similar sig-

nals. In the case of periodic signals, autocorrelation can be used to find out the

delay between one period of a periodic signal.

After the fundamental frequencies of the strings have been determined, the next

step is to make the required corrections towards target frequencies. The ’Auto-

tune’ system uses a pitch shifting algorithm to modify the frequency content of

the signal in the digital domain and then transfer this frequency corrected digital

signal back to an analogue signal. It is quite confusing to think that the strings in

the guitar can be way off from the correct tuning, but the electric signal obtained

from the guitar is in perfect tune.

The ’Robot Guitar’ uses small motors to do the required tension adjustments to

the string as it would normally be manually tuned. The fundamental frequencies
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of all strings are constantly monitored by the built-in microcontroller and the

strings are tightened or loosened according to the calculated delta to the target

frequencies. The motors can be placed at the tuning pegs or at the bridge of the

guitar, from where it is also possible to tighten the strings by using an alternative

tuning mechanism. Using motors to tune the guitar is considerably slower than

using the pitch shift algorithm to dynamically alter the frequencies of the strings.
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10

Outro

The previous chapters have covered the whole signal transmission chain of the

notes played on an electric guitar. This signal path served as a natural basis

for this book and created a rationally organised structure where the material of

previous chapters helps to understand the topics of the following chapters. In

addition, the electric guitar and related accessories contain so much fundamen-

tal applications of basic scientific research that this approach can be used as a

platform to learn a major part of university level physics. The amount of scien-

tific theories and applications related to electric guitars and especially music in

general is so enormous that this book only scratches the surface of the world of

musical science and electronics.

Simplified mathematical models were used in each section to show that the de-

signs of electric guitar related technologies can be efficiently analysed and simu-

lated at home using only a PC and some freeware programs. Detailed analysis of

simple effect devices should lay a solid foundation for advancing towards more

complicated implementations. Hopefully the contents of this book encourages all

readers to develop their skills and knowledge beyond the treatment presented in

this book. Ultimately, ideas and competence for completely new designs have

been adopted. The following paragraphs summarise each chapter, the key topics

and ideas of the book in a short and leisurely fashion.

The analysis of the vibrating string focused on presenting the string as a source

of tone with specific harmonic content. The variables that affect the structure

of the upper partial magnitudes were all identified to relate to the geometrical

shape of the string. In the initial state, the geometry of a plucked string is mainly

determined by the plucking position, displacement amplitude, width of the plec-

trum and stiffness properties of the string. The higher harmonics in the string are
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more noticeable when the string is plucked near the end support of the string,

but even then the fundamental frequency is the most dominant in the spectrum

of upper partials.

Many factors, such as length modulation during vibration, stiffness, unideal end

supports and different types of friction, cause the string to become a nonlinear

medium of propagation for transverse and longitudinal waves. The nonlinearities

also affect the tonal properties of the string by slightly modifying the upper par-

tial content in the harmonic spectrum presentation. Despite all the nonlinearities,

the behaviour of the string to a certain accuracy can be modelled mathematically

using the linear model of an ideal string.

In an electric guitar, the mechanical vibratory motion of the string is transformed

as a signal in the electrical domain using transducers, which are commonly re-

ferred to as ’guitar pickups’. Three different types of pickups (magnetic, piezo-

electric and optical) used in modern electric guitars were treated as general

transducers and analysed from the viewpoint of linearity and electrical prop-

erties. Despite being the most nonlinear pickup, the familiar magnetic pickup

enhances the strength of the higher harmonics of the string and makes the sen-

sation of tone livelier and richer. The magnetic pickup is sensitive to string vi-

brations in all directions, whereas the optical and piezoelectric pickups fail to

produce evenly changing signals when the string vibrates in elliptical trajectories

in normal playing situations.

The optical and piezoelectric pickups reproduce the most accurate replica of the

string’s harmonic spectrum, because both pickups can be categorised as displace-

ment sensitive pickups. The magnetic pickup, on the other hand, is a velocity

sensitive pickup, whose signal is not directly related to the actual displacement

trajectories of the string’s motion. Therefore, the magnetic pickup creates its

own spices to the sound of the string, making it the best choice among musical

pickups for electric guitars.

The optical pickup can be considered an active pickup because it requires a sep-

arate voltage source to operate. The magnetic and piezoelectric pickups are self-

contained passive pickups that create the electric signal directly from the physical

interaction with the motion of the string.

The user interface in the electric guitar normally contains knobs for controlling

the tone and volume. The passive tone control circuits encountered in electric
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guitars are typically very simple first order filter circuits, which can only be used

to cut out certain frequencies from the signal received from the pickups. The

most common filter type in electric guitars is the first order low-pass filter, where

the high frequencies are cut off at a certain corner frequency. To control the

tone, a guitar player can adjust the corner frequency of the low-pass filter with a

potentiometer. The low-pass filter implementation indicates that the higher up-

per partials are the ones that most dramatically change the sound of the strings.

The default tone control configuration in the electric guitar can be modified to

a certain degree until the complexity progresses towards active filters, which are

more commonly encountered in guitar amplifiers.

The guitar’s volume control interface is always implemented using a single po-

tentiometer. The output impedance of the guitar, as seen by the amplifier, is

approximately equal to the impedance of the volume pot. However, when mag-

netic pickups are used, the impedance of the pickup is connected parallel to

the volume control potentiometer. The volume potentiometer normally has such

a high resistance that the output impedance of the guitar is dominated by the

low impedance of the pickup at low frequencies. The impedance of a magnetic

pickup changes radically near the resonance frequency of a few kilohertz. At low

frequencies the impedance of the pickup is dominated by the DC resistance of

the pickup, which is about 10 kΩ. Near the resonance frequency, the impedance

is dominated by the inductance and capacitance of the magnetic pickup, which

can be as high as a few megohms.

It is easy to think that the cables used to connect the guitar to the amplifier or

to the effect devices would have no effect on the sound of the electric guitar.

By theoretical calculations it is possible to prove that the capacitance of a guitar

cable can attenuate the frequency response of the higher upper partials in the

frequency range of a few kilohertz. Additionally, the cable capacitance is respon-

sible for shifting the resonance frequency of the magnetic pickup towards lower

frequencies. The construction of high quality guitar cables imitates the internal

structure of coaxial cables, but shielded instrument cables are more flexible and

have different nominal impedances. It is not advised to use a paired cable as an

instrument cable because the quality of tone will be reduced considerably due to

lousy shielding, crosstalk and other related issues.

The field of analogue guitar effects is extremely widespread. Almost all possible

studio effects have been implemented as stand-alone guitar effects pedals. Many

of the popular effects built in the early days of analogue electronics are extremely
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simple but yet effective devices. They are also fruitful for studying and learning

all the basic elements of analogue electronics. A variety of effect devices have

been designed over the years for manipulating all elementary signal properties

of amplitude, frequency, phase, and even time.

Typically the field of professional signal processing strives to retain the quality of

the signal at the best possible level, but the guitar effects usually do just the op-

posite. Most of the effect devices create distortion, frequency sweeps, amplitude

modulation, reverberation and phase shifts; all the possible tricks to mess up

the original signal of the guitar. A guitar effects designer could not work in the

same building with a Hi-Fi audio amplifier designer. When the effects designer

is content with any Lo-Fi audio heard from the guitar amplifier, both of them are

pulling the rope in opposite directions.

Still, quite many agree that effect devices create tones that make the guitar sound

more interesting as an instrument. At least the songwriter has more freedom to

play with different sounds to come up with new ideas for the next hit single. As

an example, an old classic song can be coloured up and revitalised by playing it

through a set of carefully chosen sound effects.

An electric guitar is nothing without an amplifier, so the musician buying a guitar

is also forced to buy a heavy-duty amplifier. Transistors and tubes are the essen-

tial electrical components to enable amplification of electric signals. In guitar

amplifiers, these components are used in their natural habitat as discrete am-

plification elements. Again, old and simple guitar amplifiers lay down the best

practical guidelines for learning about the basics of audio amplification technol-

ogy.

The golden rule of thumb is: never talk to a Hi-Fi fanatic about loudspeakers,

because the discussion will eventually develop into a monologue of unbelievable

jargon which will ruin your whole day. Actually, never discuss anything related

to music with a Hi-Fi guy. But anyway, loudspeakers are needed as the final

electromechanoacoustical transducer stage to transmit the notes played on the

guitar to be received by the ears of the audience.

Guitar tuners are your best friends if you want to play in tune. It is also possi-

ble to survive without a tuner device only by trusting your own ears. All that is

needed is a sound source of a known reference note. All the other tunings can

be made by ear relative to the one fixed reference. If you are an engineer, collect
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all the possible tuning devices in the world and take them apart to see how they

are actually made. When using the knowledge of the upper partial structure of a

plucked guitar string, one can develop a tuning technique based on the plucking

position and the pickup location that will directly generate a relatively clean sine

wave. A pure sine wave is an optimal signal when trying to detect the correct fre-

quency for fine-tuning the instrument. Applications of modern technology have

finally produced feasible solutions for building self-tuning guitars. Automatic

tuning systems are interesting from the scientific point of view, but obviously not

necessarily required to play the guitar in tune.

In addition to all the guitar related information, many examples of practical cir-

cuit analysis methods have been given. Especially the systematic matrix methods

to solve transfer functions from small-signal models in symbolic form are very

useful in many ways. The use of the matrix method does not require the skills to

’invent’ adequate current and voltage equations from a circuit diagram. Instead,

it offers a very straightforward method of solving expressions for currents and

voltages in all sections of the circuit under analysis. From the symbolic expres-

sions it is often possible to identify the key components that affect the gain and

the cut-off frequency of the analysed circuit. If the matrix equation is too massive

to be solved in symbolic form, mathematical software such as Octave or Matlab

can be used to solve numerical values for the necessary determinants.

Furthermore, many practical examples have been provided from SPICE simula-

tions of analogue circuits. Especially in analogue electronics, SPICE is a very

useful tool for simulating the essential functionality of almost any circuit. With

one simulation run one can relatively easily solve the quiescent voltages, fre-

quency response and transient behaviour of a circuit. When looking under the

hood, SPICE is more or less based on the same matrix methods that are used in

nodal analysis, which was used extensively in almost all chapters of this book.

This concludes the life journey of a ˇ “( which successfully made its way through

the complete signal chain of an electric guitar.
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Nomenclature

Notation Quantity Unit name Special unit Basic form

a acceleration - -
1

s2

α
angular

acceleration
- -

1

s2

A, S area - - m2

An
amplitude
component

- - 1

β
mechanical
resistance

- -
kg

s

βF , hFE
DC current

gain
- - 1

~B
magnetic

field
tesla T

kg

A · s2

C capacitance farad F
A2 · s4
kg · m2

c velocity - -
m

s

~D
electric dis-
placement

- -
A · s
m2

Continued on the next page...
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Notation Quantity Unit name Special unit Basic form

E
Young’s
modulus

pascal Pa
kg

m · s2

~E electric field - -
kg · m
A · s3

E total energy joule J
kg · m2

s2

ε
electromo-

tive
force

volt V
kg · m2

A · s3

ǫ permittivity - -
A2 · s4
kg · m3

~F force newton N
kg · m

s2

f frequency hertz Hz
1

s

G
conductiv-

ity
siemens Ω−1 A2 · s3

kg · m2

gm
transcon-
ductance

siemens Ω−1 A2 · s3
kg · m2

G
shear

modulus
pascal Pa

kg

m · s2

hfe
AC current

gain
- - 1

I, i current ampere - A

I intensity watt W
kg · m2

s3

I
moment of

inertia
- - kg · m2

Continued on the next page...
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Notation Quantity Unit name Special unit Basic form

Ip
polar

moment of
inertia

- - m5

Id
diametral
moment of

inertia
- - m5

~J
current
density

- -
A

m2

J
torsional
rigidity

- -
kg · m3

s2

k
spring

constant
- -

kg

s2

k
wave

number
- -

1

m

κ
radius of
gyration

metre - m

L, l length metre - m

L inductance henry H
kg · m2

A2 · s2

M torque - -
kg · m2

s2

m mass kilogram - kg

N
sample
length

- - 1

N
electrome-
chanical
factor

- -
m

A · s

nx
index of

refraction
- - 1

Continued on the next page...
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Notation Quantity Unit name Special unit Basic form

p pressure pascal Pa
kg

m · s2

P power watt W
kg · m2

s3

Φ
magnetic

flux
weber Wb

kg · m2

A · s2

Q
quality
factor

- - 1

Q, q
electric
charge

coulomb C A · s

ρ resistivity - Ωm
kg · m3

A2 · s3

ρ density - -
kg

m3

r radius metre - m

R, r resistance ohm Ω
kg · m2

A2 · s3

T tension newton N
kg · m

s2

T
tempera-

ture
kelvin - K

T period second - s

t time second - s

τ
time

constant
second - s

Continued on the next page...
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Notation Quantity Unit name Special unit Basic form

u
volume
velocity

- -
m3

s

µ
amplifica-

tion
factor

- - 1

µ
permeabil-

ity
- -

kg · m
A2 · s2

U
potential
energy

joule J
kg · m2

s2

V, v voltage volt V
kg · m2

A · s3

ω
angular
velocity

- -
m

s

Xn
Fourier

component
- - 1

xn data value - - 1

X reactance ohm Ω
kg · m2

A2 · s3

Y admittance siemens Ω−1 A2 · s3
kg · m2

Z impedance ohm Ω
kg · m2

A2 · s3

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



598 REFERENCES

Abbreviations

e.m.f. = electromotive force

KVL = Kirchhoff’s Voltage Law

KCL = Kirchhoff’s Current Law

DFT = Discrete Fourier Transform

IDFT = Inverse Fourier Transform

BJT = Bipolar Junction Transistor

JFET = Junction Field-Effect Transistor

MOSFET = Metal Oxide Semiconductor Field-Effect Transistor

AC = Alternating Current

DC = Direct Current

LED = Light Emitting Diode

LDR = Light Dependent Resistor

VSWR = Voltage Standing Wave Ratio

DIY = Do It Yourself

SPICE = Simulation Program with Integrated Circuit Emphasis

op-amp = Operational Amplifier

IC = Integrated Circuit
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Appendix A – Mathematical derivations

A step-by-step derivation of the magical expression for the theoretical amplitude

spectrum components of a vibrating string is presented here. The meaning of the

variables used in the derivation are indicated in the figure showing the deflected

string having a triangle form.

0

a

0 p L

g(x)=a·
[

x
p
(0≤x≤ p)−L−x

L−p
(p<x≤L)

]

g(x)

According to the theories of the Fourier series, the amplitude spectrum bin mag-

nitudes can be evaluated as

An =
2

L

L∫

0

g(x) sin
(nπx

L

)

dx,

where the function g(x) is formed as a piecewise function according to the geo-

metric form of the deflected string

g(x) = a

[
x

p
(0 ≤ x ≤ p) +

L− x

L− p
(p < x ≤ L)

]

.

Based on this theoretical jewel, the expression for An can be solved in symbolic

form by using a common integration method of integration by parts. All the

intermediate steps leading to the final result are written down in the following

listing:
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An =
2

L

p∫

0

ax

p
sin
(nπx

L

)

dx+
2

L

L∫

p

a(L− x)

L− p
sin
(nπx

L

)

dx

=
2

L

p∫

0

ax

p

L

nπ
sin
(nπx

L

) nπ

L
dx+

2

L

L∫

p

a(L− x)

L− p

L

nπ
sin
(nπx

L

) nπ

L
dx

=
2

L

/p

0

− ax

p

L

nπ
cos
(nπx

L

)

− 2

L

p∫

0

−a

p

L

nπ
cos
(nπx

L

)

dx+

2

L

/L

p

− aL− ax

L− p

L

nπ
cos
(nπx

L

)

− 2

L

L∫

p

a

L− p

L

nπ
cos
(nπx

L

)

dx

= − 2

L

aL

nπ
cos
(nπp

L

)

+ 0 +
2

L

p∫

0

a

p

L2

n2π2
cos
(nπx

L

) nπ

L
dx− 0+

2

L

a(L− p)

L− p

L

nπ
cos
(nπp

L

)

− 2

L

L∫

p

a

L− p

L2

n2π2
cos
(nπx

L

) nπ

L
dx

= − 2

L

aL

nπ
cos
(nπp

L

)

+
2

L

/p

0

a

p

L2

n2π2
sin
(nπx

L

)

+

2

L

aL

nπ
cos
(nπp

L

)

− 2

L

/L

p

a

L− p

L2

n2π2
sin
(nπx

L

)

=
2

L

a

p

L2

n2π2
sin
(nπp

L

)

− 0− 0 +
2

L

a

L− p

L2

n2π2
sin
(nπp

L

)

=
2a

n2π2

(
L

p
+

L

L− p

)

sin
(nπp

L

)
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Appendix B – SPICE netlists

A complete SPICE netlist for the Phase 45 circuit

The circuit diagram of the Phase 45 effect pedal is shown in Figure 6.83

* gnetlist -g spice-sdb -o phaser_net.net phaser45.sch

*********************************************************

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*********************************************************

.include /usr/share/gEDA/models/spice/tex_inst.lib

.control

tran 10us 990ms 810ms

set filetype=ascii

write phasdata.txt tran1.v(3) tran1.v(20)

gnuplot phas_tran tran1.v(3) tran1.v(20)

.endc

.OP

*============== Begin SPICE netlist of main design ============

R20 21 23 3900k

XOP1 5 7 1 0 8 TL071/301/TI

XOP2 9 12 1 0 13 TL071/301/TI

XOP3 17 16 1 0 18 TL071/301/TI

XOP4 24 26 1 0 27 TL071/301/TI

V2 0 3 DC 0 AC 1 SIN(0 0.1 100)

V1 1 0 DC 9V

R27 0 20 150k

C11 19 20 0.05uF

R25 23 25 1k

R24 24 27 150k

D1 0 6 DIO1

.MODEL DIO1 D (Is = 1.0f Bv = 4.7)

R17 19 8 10k

R23 26 23 150k

R26 27 25 7.5k

R22 0 24 150k

R21 24 1 150k

R3 5 6 470k

R4 6 1 10k

R182 0 22 130k

R19 22 21 1000k

R181 22 6 120k

R7 9 10 10k
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R8 10 6 10k

R9 11 21 470k

R14 15 21 470k

R13 14 6 10k

R12 17 14 10k

R16 19 18 10k

R15 16 18 10k

R11 13 16 10k

R10 12 13 10k

R6 8 12 10k

R5 7 8 10k

R2 6 7 20k

R1 5 4 10k

J2 6 15 17 2N5457

J1 6 11 9 2N5457

.MODEL 2N5457 NJF (VTO=-1.8 BETA=0.00135 LAMBDA=0.001 RD=35 RS=31.5

+ CGS=2.25E-12 CGD=6E-12 KF=6.5E-17 AF=0.5)

C3 6 0 10uF

C2 1 0 10uF

C9 23 0 10uF

C6 6 21 0.05uF

C10 26 27 0.01uF

C8 14 15 0.01uF

C5 10 11 0.01uF

C7 13 17 0.05uF

C4 8 9 0.05uF

C1 3 4 0.01uF

.end

A SPICE netlist for the Baxandall tone control circuit

The circuit diagram of the Baxandall tone control system is presented in Figure

4.18

* gnetlist -g spice-sdb -o baxandal.net baxandal.sch

*********************************************************

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*********************************************************

.control

ac dec 90 10 100K

alter RT1 100

alter RT2 500k

ac dec 90 10 100K

alter RT1 500k

alter RT2 1k

ac dec 90 10 100K

alter RT1 250k

alter RT2 250k

alter RB1 100

alter RB2 500k

ac dec 90 10 100K
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alter RB1 500k

alter RB2 1k

ac dec 90 10 100K

gnuplot baxall db(ac1.v(4)) db(ac2.v(4)) db(ac3.v(4)) db(ac4.v(4)) db(ac5.v(4))

.endc

*============== Begin SPICE netlist of main design ============

C4 0 7 3300pF

C3 6 1 330pF

R2 0 5 10k

C1 3 2 470pF

C2 3 5 4700pF

RB2 5 3 250k

RB1 3 2 250k

RT2 7 4 250k

RT1 4 6 250k

R3 4 3 180k

VP 0 1 DC 0 AC 1

R1 2 1 100k

.end

A SPICE netlist for the Moonlight tone control circuit

The circuit schematic of the Moonlight single-pot tone control system is pre-

sented in Figure 4.16.

* gnetlist -g spice-sdb -o moonlight.net moonlight.sch

*********************************************************

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*********************************************************

.control

ac dec 90 10 100K

alter RT1 100

alter RT2 500k

ac dec 90 10 100K

alter RT1 500k

alter RT2 1k

ac dec 90 10 100K

gnuplot moon db(ac1.v(4)) db(ac2.v(4)) db(ac3.v(4))

.endc

*============== Begin SPICE netlist of main design ============

R2 4 1 470k

RT2 0 3 250k

RT1 3 2 250k

RV2 0 5 250k

RV1 5 4 250k

R3 0 4 270k

VP 0 1 DC 0 AC 1
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R1 2 1 220k

C1 4 3 560pF

.end

A SPICE netlist for the Fender Pro 6G5 tone control circuit

The circuit schematic of the Fender-style tone control system is presented in Fig-

ure 4.20.

* gnetlist -g spice-sdb -o fenton.net fenton.sch

*********************************************************

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*********************************************************

.control

ac dec 90 10 100K

alter RT1 100

alter RT2 250k

ac dec 90 10 100K

alter RT1 250k

alter RT2 1k

ac dec 90 10 100K

alter RT1 125k

alter RT2 125k

alter RB1 100

alter RB2 250k

ac dec 90 10 100K

alter RB1 250k

alter RB2 1k

ac dec 90 10 100K

gnuplot fenton db(ac1.v(4)) db(ac2.v(4)) db(ac3.v(4)) db(ac4.v(4)) db(ac5.v(4))

.endc

*============== Begin SPICE netlist of main design ============

R2 0 3 10k

C2 3 2 0.01uF

C1 5 1 250pF

RB2 0 3 125k

RB1 3 2 125k

RT2 2 4 125k

RT1 4 5 125k

VP 0 1 DC 0 AC 1

R1 2 1 100k

.end
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Appendix C – Octave scripts

The motion of an ideal string

An Octave script to visualise the motion of the ideal string as a sum of two

identical triangles moving in opposite directions.

clear all

clc

% initialise variables

n = 1:100;

% length of the string chosen as 100 cm

L = 100;

% plucking position defined as a fraction of the string’s length

p = L/9;

% the string is drawn from 0 to L in the x direction

x = 0:0.1:L;

% plucking displacement is chosen as 6mm

a = 0.6;

% drawing the initial configuration at t = 0

t = 0*L;

% calculate the initial shape of the string as

% two identical triangles K1 and K2 and their sum K3

FACTOR = 2*a*(L/p + L/(L-p))/pi^2;

Z1 = sin(n’*pi*(x-t)/L)’;

Z2 = sin(n’*pi*(x+t)/L)’;

Z = (sin(n*pi*p/L)./n.^2)’;

K1 = 0.5*FACTOR*Z1*Z;

K2 = 0.5*FACTOR*Z2*Z;

K3 = K1 + K2;

% setup a figure to the screen, the plot in it will be updated dynamically

figur = plot(x,K3,’LineWidth’,5, x,K2,’LineWidth’,5, x,K1,’LineWidth’,5);

set(gca,’ylim’,[-a*1.1 a*1.1]);

set(gca,’ytick’,[-a 0 a]);

set(gca,’yticklabel’,{’-a’,’0’,’a’});

set(gca,’xlim’,[0,L]);

set(gca,’xtick’,[0 p L]);

set(gca,’xticklabel’,{’0’,’p’,’L’});

set(gca,’fontsize’,14);

legend(’a*[f(x-ct) + f(x+ct)]’,’f(x+ct)’,’f(x-ct)’);

% loop for few full periods of vibration, advance time

for s = 1:400

t = (s/100)*L;

% calculate the shape of the string again as the time has changed
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FACTOR = 2*a*(L/p + L/(L-p))/pi^2;

Z1 = sin(n’*pi*(x-t)/L)’;

Z2 = sin(n’*pi*(x+t)/L)’;

Z = (sin(n*pi*p/L)./n.^2)’;

K1 = 0.5*FACTOR*Z1*Z;

K2 = 0.5*FACTOR*Z2*Z;

K3 = K1 + K2;

% update data in the figure window

set(figur(1),’ydata’,K3);

set(figur(2),’ydata’,K2);

set(figur(3),’ydata’,K1);

% draw the updated data

drawnow;

end;

Theoretical error limits

An Octave script to calculate theoretical error limits for the amplitude spectrum

of a plucked string to be compared with measurement results.

clear all

clc

% the length of the string is actually 600 mm

% but the scale is expanded here

L = 6000;

% plucking location as a fraction of the length

P = L/12;

% uncertainty in pluck location measurement (+- 1mm)

dP = 10;

% transducer location from the bridge

X = 80;

% uncertainty in transducer location measurement (+- 1mm)

dX = 10;

% arrays to hold maximum, minimum and exact (R) values

MAX = [];

MIN = [];

R = [];

% calculate for 50 upper partials

for n = 1:50

PV = P-dP:P+dP;

XV = X-dX:X+dX;

% the size of this matrix is PV x XV

Y = sin(n*pi.*PV./L)’*sin(n*pi.*XV/L)/( (n^2)*sin(pi*P/L)*sin(n*pi*X/L) );

% locate the max and min values from Y (DIM 2)

MAX = [MAX max( max(abs(Y)) )];

MIN = [MIN min( min(abs(Y)) )];

R = [R sin(n*pi*P/L)*sin(n*pi*X/L)/( (n^2)*sin(pi*P/L)*sin(n*pi*X/L) ) ];
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end;

% print out the normalised values to the screen

MAX’/max(abs(R))

MIN’/max(abs(R))

abs(R’)/max(abs(R))

Simulating the induced e.m.f. in a magnetic pickup

An Octave script to visualise the magnetic field and the induced e.m.f. at the

pickup with respect to a specific displacement pattern of an ideal string. Theo-

retical e.m.f. from the form of the string is also calculated and visualised.

clear all

clc

% 100 upper partials are used for constructing the form of the string

n=1:100;

% the lenght of the string... the units are meters :)

L=100;

% plucking position measured as a fraction of the string length

p=L/2;

% pickup position with respect to the length

x=L/4;

% amplitude of the initial pluck

a = 4;

% time defined relative to the vibration periods (full period = 2L)

t = 0:1:4*L;

% building the string from the components of the Fourier series.

% K will hold the values of the form of the string at time t.

FACTOR = 2*a*(L/p + L/(L-p))/pi^2;

Z1 = sin(n’*pi*(x-t)/L)’;

Z2 = sin(n’*pi*(x+t)/L)’;

Z = (sin(n*pi*p/L)./n.^2)’;

K = 0.5*FACTOR*(Z1+Z2)*Z;

% differential of the string displacement with respect to time.

% in theory this describes the velocity a string sensed by a magnetic pickup

% and reflects waveform of the induced e.m.f.

dKdt = diff(K) ./ diff(t’);

% calculating the magnetic field changes in the pickup

% with respect to the location of the string given by K

% string is vibrating 5 mm above the pickup magnet and

% the changes in the magnetic field are measured 2 mm above the string

% x0,y0,z0 define the origin

% x1,y1,z1 define the location of a string in rest above the magnet

% xp,yp,zp define the point of measuring the changes in

% the magnetic field component Bz

sigma = 1;

y1 = 0;

x1 = 0;

x0 = 0;

y0 = 0;

z0 = 0;
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z1 = 5.0;

xp = 0;

yp = 0;

zp = 2.0;

B = []; % empty storage array for measured magnetic field values

T = []; % empty storage array for time values

S = []; % empty storage array for string deflection values

% a for loop progresses through all the string displacement values which

% initially calculated as a function of time so each displacement value

%represents the dislocation of the string as time advances

for q = 1:length(K)

% x-coordinate (and z-coordinate) values updated as

% a function of the string displacement

x1 = K(q);

%z1 = 5.0 - ( K(q)/4 );

% integrating the magnetic field at the string, the size of the

% pickup magnet is defined by the integration limit as 2*6.5 mm

Bs = dblquad(@(r,p) (sigma.*r)./( (x1 - (x0 - r.*cos(p))).^2 + ...

(y1 - (y0 - r.*sin(p))).^2 + (z1 - z0)^2 ) ,0,6.5,0,2*pi);

% the magnetic field observed at 2 mm above the pickup magnet

Bz = Bs * (z1-zp)/( ( (x1-xp)^2 + (y1-yp)^2 + (z1-zp)^2 )^(3/2) );

B = [B Bz]; % update a new value to array on each round

T = [T q];

S = [S K(q)];

end; % end for loop

% calculate the derivative of the magnetic field values

% to obtain the induced e.m.f.

dB = diff(B’) ./ diff(T’);

% store the simulated e.m.f. values to an array

EMF = [0 dB’];

% constructing four separate figures to visualise all the evaluated data.

% separate figures used to avoid scaling of different magnitudes to the same plot

figure (1)

plot(T,B)

set(gcf,’name’,’Magnetic Field B by simulation model’,’numbertitle’,’off’)

set(gca,’xlim’,[0,4*L]);

set(gca,’xtick’,[0 4*L]);

set(gca,’xticklabel’,{’0’,’4L’});

set(gca,’fontsize’,14);

xlabel(’time’)

figure (2)

plot(T,EMF)

set(gcf,’name’,’Induced e.m.f. by simulation model’,’numbertitle’,’off’)

set(gca,’xlim’,[0,4*L]);

set(gca,’xtick’,[0 4*L]);

set(gca,’xticklabel’,{’0’,’4L’});

set(gca,’fontsize’,14);

xlabel(’time’)

figure (3)
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plot(T,[0 dKdt’])

set(gcf,’name’,’Induced e.m.f. by analytical expression’,’numbertitle’,’off’)

set(gca,’xlim’,[0,4*L]);

set(gca,’xtick’,[0 4*L]);

set(gca,’xticklabel’,{’0’,’4L’});

set(gca,’fontsize’,14);

xlabel(’time’)

figure (4)

plot(T,S)

set(gcf,’name’,’String displacement as a function of time’,’numbertitle’,’off’)

set(gca,’xlim’,[0,4*L]);

set(gca,’xtick’,[0 4*L]);

set(gca,’xticklabel’,{’0’,’4L’});

set(gca,’fontsize’,14);

xlabel(’time’)

Solving circuits numerically with Octave

An example Octave script to evaluate an admittance matrix equation numerically

using Cramer’s rule. Run command: preamp(90,1,10000,1)

function z = preamp(deviation, startfreq, stopfreq, mode)

% define the step size for frequency vector

% adder is the step for arithmetic series (mode = 1)

% multiplr is the step for geometric series (mode = 2)

adder = (10-1)/deviation;

multiplr = 10^(1/deviation);

% determine the exponent k according to input variable stopfreq

k = 0;

while 10^k < stopfreq

k = k + 1;

end;

% buffer to store the frequency and the magnitude data for plotting

PLOTBUF = [];

% define the component values used in the matrix equation

RI = 1000000;

RG = 22000;

RK = 3300;

RL = 220000;

rp = 62500;

RS = 100;

CK = 4.7e-6;

CP = 0.47e-6;

u = 100;

% buffers to hold magnitude (H) and frequency (X) data

H=[];

X=[];

%initial value for the start frequency

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



610 REFERENCES

f = 1;

% loop over the given frequency range

for j = 0:k

while f <= (10^(j+1) - adder)

if (f >= (startfreq - 0.00001) && f <= stopfreq)

w = f*2*pi;

% define the matrix elements

Y11 = 1/RS + 1/RI + 1/RG;

Y12 = Y21 = -1/RG;

Y22 = 1/RG;

Y32 = -u/rp;

Y33 = 1/RK + (u+1)/rp + i*w*CK;

Y34 = -1/rp;

Y42 = u/rp;

Y43 = -(u+1)/rp;

Y44 = 1/rp + 1/RL + i*w*CP;

Y45 = Y54 = -i*w*CP;

Y55 = i*w*CP;

NIMx = [Y11 Y12 0 0 0; ...

Y21 Y22 0 0 0; ...

0 Y32 Y33 Y34 0; ...

0 Y42 Y43 Y44 Y45; ...

0 0 0 Y54 Y55;];

OSx = [Y11 Y12 0 0 1/RS; ...

Y21 Y22 0 0 0; ...

0 Y32 Y33 Y34 0; ...

0 Y42 Y43 Y44 0; ...

0 0 0 Y54 0;];

% calculate the magnitude in decibels

H=[H 20*log10(abs(det(OSx)/det(NIMx)))];

X = [X f];

endif;

% determine the next frequency according to the chosen mode

if (mode == 1)

f = f + adder*10^j;

else

f = f*multiplr;

endif;

end; % while

end; % for

% store data to be saved and/or plotted

PLOTBUF = [PLOTBUF X’ H’];

% save the data as a text file for plotting later with Gnuplot

% ngspice generates similar data file,

% so comparison and plotting against that is simple.

save -ascii preamp_octa.data PLOTBUF

The Science of Electric Guitars and Guitar Electronics; copyright c© (2012 – 2014) Jarmo Lähdevaara



REFERENCES 611

Designing a BJT Phase-Shift oscillator with Octave

An example Octave script to help in Phase-Shift oscillator design.

% numerical (iteration) and analytical calculation of

% oscillating frequency of the phase shift oscillator

clear all; clc;

% CALCULATE RB IF RC, VCC AND BETA ARE KNOWN

VT = 0.025;

VCC = 9

VBE = 0.65

B1 = 200

RC = 15000

RB = RC*(B1+1)*(2*(VCC - VBE)/VCC - 1)

% SET COLLECTOR BIAS VOLTAGE TO VCC/2

IEQ = (VCC - VBE)/(RC + RB/(B1+1))

VC = VCC - IEQ*RC

% ONCE BIAS IS SET, DETERMINE rpi

ICQ = IEQ*B1/(B1+1);

gm = ICQ/VT;

rpi = B1/gm

rpi = B1*VT/ICQ

% SET FREQUENCY WITH COMPONENT VALUES

R1 = 15000

R2 = 33000

C1 = 2.2e-06

C2 = 5.5e-08

C3 = 7.7e-07

% DEFINE HELPER RESISTANCES

RxA = RC*(rpi + RB)/(rpi + RB + RC);

RxB = rpi*(RC + RB)/(rpi + RB + RC);

RxC = RB*(rpi + RC)/(rpi + RB + RC);

RRxD = rpi*RB*RC/(rpi + RB + RC);

% CALCULATE FREQUENCY f USING QUADRATIC FORMULA WITH PARAMS A,B and C

C = -(RxA*C1+RxB*C3);

B = ((RxC-RB)*R1*R2 - (R1+R2)*(R1*RxB+R2*RxA))*C1*C2*C3-...

(C1*RxA+C3*RxB)*((R1+R2)*(R1+R2)*C2 + (R1*C1*R1+R2*C3*R2))*C2-...

R2*(R2*RxA+RRxD)*C1*C3*C3 - R1*(R1*RxB+RRxD)*C1*C1*C3;

A = RB*R1*R2*C1*C2*C3*...

( (C1*C2+C1*C3+C2*C3)*(R1*R2*(1-RxC/RB) - (R1+R2)*RRxD/RB)+ ...

C2*(C1*RxA+C3*RxB)*(R1+R2) + C1*C3*(R1*RxB+R2*RxA+RRxD) );

f = sqrt( (-B+sqrt(B*B-4*A*C))/(8*pi*pi*A) )

w = 2*pi*f;

% HAND-CALCULATED DETERMINANTS TO BE COMPARED TO NUMERIC DETERMINANTS LATER

CRAMER_V1 = 1 - w*w*(C1*C2+C1*C3+C2*C3)*R1*R2 + ...

i*(R1*(C1+C2)*w + R2*(C2+C3)*w - RB*R1*R2*C1*C2*C3*w*w*w);

CRAMER_V2 = 1 + RB/rpi - ...

w*w*(R1*R2*(1+RB/rpi)*(C1*C2+C1*C3+C2*C3) + C1*C3*RB*R1 + C2*C3*RB*(R1+R2))+...

i*w*(R1*(1+RB/rpi)*(C1+C2) + R2*(1+RB/rpi)*(C2+C3) + C3*RB)-...

i*w*w*w*R1*R2*RB*C1*C2*C3;

DET_Y = 1 -...

w*w*(C1*C2*(R1*R2+(R1+R2)*RxA))-...

w*w*(C1*C3*(R1*R2+R1*RxB+R2*RxA+RRxD) + C2*C3*(R1*R2+(R1+R2)*RxB))+...
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i*w*(C1*(R1+RxA) + C2*(R1+R2) + C3*(R2+RxB)) -...

i*w*w*w*C1*C2*C3*((R1+R2)*RRxD + R1*R2*RxC);

% PRINT RESULTS TO CONSOLE

B_NEEDED = -(RB*rpi/RRxD)*...

( 1 - w*w*(C1*C2*(R1*R2+(R1+R2)*RxA) + C1*C3*(R1*R2+R1*RxB+R2*RxA+RRxD)+...

C2*C3*(R1*R2+(R1+R2)*RxB)) ) / (1 - R1*R2*(C1*C2+C1*C3+C2*C3)*w*w)

GAIN = B1*RRxD*CRAMER_V2/(rpi*RB*DET_Y)

GAIN_ABS = abs(GAIN)

NODE_V1 = -(RRxD/RB)*CRAMER_V1/DET_Y

NODE_V2 = -(RRxD/RB)*CRAMER_V2/DET_Y

% INCREASE FREQUENCY SLIGHTLY AND LOOP DOWN UNTIL IMAGINARY PART CHANGES SIGN

% EVALUATE DETERMINANTS ON EACH ITERATION

% THIS IS FOR VERIFYING CORRECTNESS OF MANUAL CALCULATIONS

f = f + 0.05; angled = -1;

while angled < 0

f = f - 0.00001;

w = 2*pi*f;

Y11 = 1/rpi + 1/RB + i*w*C3;

Y12 = Y21 = 1/RB;

Y14 = Y41 = i*w*C3;

Y22 = 1/RC + 1/RB + i*w*C1;

Y23 = Y32 = i*w*C1;

Y33 = 1/R1 + i*w*C1 + i*w*C2;

Y34 = Y43 = i*w*C2;

Y44 = 1/R2 + i*w*C2 + i*w*C3;

% V1/V1

CRAMER_V1=[ -Y12 0 -Y14 ; ...

-Y32 Y33 -Y34 ; ...

0 -Y43 Y44 ];

% V2/V1

CRAMER_V2=[ Y11 0 -Y14 ; ...

0 Y33 -Y34 ; ...

-Y41 -Y43 Y44 ];

% Common denominator

DET_Y=[ Y11 -Y12 0 -Y14 ; ...

-Y21 Y22 -Y23 0 ; ...

0 -Y32 Y33 -Y34 ; ...

-Y41 0 -Y43 Y44 ];

angled = arg(det(CRAMER_V1)/det(DET_Y));

end; % while

% PRINT RESULTS TO CONSOLE

f

B_NEEDED = (det(DET_Y)/det(CRAMER_V1))*rpi

GAIN = (B1/rpi)*det(CRAMER_V2)/det(DET_Y)

GAIN_ABS = abs(GAIN)

NODE_V1 = det(CRAMER_V1)/det(DET_Y)

NODE_V2 = -det(CRAMER_V2)/det(DET_Y)
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Orange Squeezer compressor parts list

Resistors:

R1 = 4.7 MΩ R2 = 82 kΩ R3 = 390 kΩ

R4 = 220 kΩ R5 = 10 kΩ R6 = 1.5 kΩ

R7 = 100 kΩ R8 = 470 kΩ R9 = 470 kΩ

R10 = 470 kΩ R11 = 2.4 kΩ R12 = 10 kΩ (trim. pot.)

Capacitors:

C1 = 0.047 µF C2 = 0.047 µF C3 = 0.0022 µF

C4 = 4.7 µF C5 = 4.7 µF C6 = 4.7 µF

C7 = 4.7 µF

Diode: 1N100 or 1N34A

Operational amplifier: 4558

JFETs: 2N5457 or BF245A.

Stage Center Reverb parts list

Resistors:

R1 = 1 MΩ R2 = 22 kΩ R3 = 470 kΩ

R4 = 2.2 MΩ R5 = 47 kΩ R6 = 50 kΩ

R7 = 50 kΩ R8 = 10 kΩ R9 = 10 kΩ

R10 = 33 kΩ

Capacitors:

C1 = 0.02 µF C2 = 0.02 µF C3 = 0.22 µF

C4 = 220 pF C5 = 0.22 µF C6 = 0.22 µF

Operational amplifier: no special requirements.

Reverberation unit: nominal input impedance of 150 Ω or higher.
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Aria AB-30 Bass amplifier parts list

Resistors

R100 = 12 kΩ R101 = 12 kΩ R102 = 220 kΩ R103 = 47 kΩ

R105 = 1 kΩ R106 = 3.9 kΩ R110 = 470 kΩ R111 = 2.2 kΩ

R112 = 47 kΩ R113 = 4.7 kΩ R120 = 47 kΩ R121 = 4.7 kΩ

R122 = 18 kΩ R123 = 2.2 kΩ R124 = 47 kΩ R125 = 270 Ω

R126 = 2.7 kΩ R127 = 3.3 kΩ R128 = 220 Ω R129 = 220 Ω

R130 = 0.5 Ω R131 = 0.5 Ω R201 = 33 kΩ R202 = 47 kΩ

R203 = 100 kΩ R204 = 47 kΩ R205 = 1 MΩ R206 = 220 kΩ

R207 = 12 kΩ

Capacitors

C100 = 560 pF C101 = 560 pF C102 = 0.1 µF C103 = 100 pF

C104 = 10 µF C105 = 2.2 µF C108 = 0.001 µF C109 = 0.001 µF

C202 = 0.1 µF C203 = 0.22 µF C113 = 2.2 µF C114 = 0.001 µF

C115 = 2.2 µF C118 = 4.7 µF C120 = 22 µF C121 = 150 pF

C122 = 22 pF C123 = 100 µF

Potentiometers

volume: = 50 kΩ (log) master: = 50 kΩ (lin)

treble: = 100 kΩ (log) middle: = 100 kΩ (log)

bass: = 100 kΩ (log)

Transistors

Q102 = KTC3198 Q103 = KTC3198 Q104 = A1266

Q105 = C1627A Q106 = A1274 Q107 = D1352

Q108 = B989

Operational amplifier: JRC NJM 4558
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